Publié-e

2002-07-01

Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature

Mots-clés :

Clifford hypersurfaces, minimal hypersurfaces, shape operator (es)

Téléchargements

Auteurs-es

  • Oscar Perdomo Universidad del Valle

In this paper we prove that if M ⊏ ℝn , n = 8 or n = 9, is a n  - 1 dimensional stable minimal complete cone such that its scalar curvature varies radially, then M must be either a hyperplane or a Clifford minimal cone.

By Gauss' formula, the condition on the scalar curvature is equivalent to the condition that the function K1(m)2 + ... + Kn-1 (m)2 varies radially. Here the Ki are the principal curvatures at m ∈ M. Under the same hypothesis, for M ⊏ ℝ10  we prove that if not only K1(m)2 + ... + Kn-1 (m) varies radially but either K1(m)3 + ... + Kn-1 (m)3 varies radially or K1(m)4 + ... + Kn-1 (m)4 varies radially, then M must be either a hyperplane or a Clifford minimal cone.

Comment citer

APA

Perdomo, O. (2002). Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas, 36(2), 97–106. https://revistas.unal.edu.co/index.php/recolma/article/view/33867

ACM

[1]
Perdomo, O. 2002. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas. 36, 2 (juill. 2002), 97–106.

ACS

(1)
Perdomo, O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. rev.colomb.mat 2002, 36, 97-106.

ABNT

PERDOMO, O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas, [S. l.], v. 36, n. 2, p. 97–106, 2002. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33867. Acesso em: 22 janv. 2025.

Chicago

Perdomo, Oscar. 2002. « Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature ». Revista Colombiana De Matemáticas 36 (2):97-106. https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Harvard

Perdomo, O. (2002) « Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature », Revista Colombiana de Matemáticas, 36(2), p. 97–106. Disponible à: https://revistas.unal.edu.co/index.php/recolma/article/view/33867 (Consulté le: 22 janvier 2025).

IEEE

[1]
O. Perdomo, « Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature », rev.colomb.mat, vol. 36, nᵒ 2, p. 97–106, juill. 2002.

MLA

Perdomo, O. « Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature ». Revista Colombiana de Matemáticas, vol. 36, nᵒ 2, juillet 2002, p. 97-106, https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Turabian

Perdomo, Oscar. « Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature ». Revista Colombiana de Matemáticas 36, no. 2 (juillet 1, 2002): 97–106. Consulté le janvier 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Vancouver

1.
Perdomo O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. rev.colomb.mat [Internet]. 1 juill. 2002 [cité 22 janv. 2025];36(2):97-106. Disponible à: https://revistas.unal.edu.co/index.php/recolma/article/view/33867

Télécharger la référence

Consultations de la page du résumé de l'article

182

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.