Remarks on da costa's paraconsistent set theories
Palabras clave:
Paraconsistent theories, theories of sets, paraconsistent logics, theory da Costa, Russell set, universal set, schemes, axiom of separation (es)Descargas
In this paper we analyse da Costa's paraconsistent set theories, i.e., the set theories constructed over da Costa's paraconsistent logics C=n, 1 ≤ n ≤ ω. The main results presented here are the following. In any da Costa paraconsistent set theory of type NF the axiom schema of abstraction must be formulated exactly as in NF; for, in the contrary, some paradoxes are derivable that invalidate the theory. In any da Costa paraconsistent set theory with Russell's set [Formula Matemática] UUR is the universal set. In any da Costa paraconsistent set theory the existence of Russell's set is incompatible with a general (for all sets) formulation of the axiom schemata of separation and replacement.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 1985 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.