Remarks on da costa's paraconsistent set theories
Mots-clés :
Paraconsistent theories, theories of sets, paraconsistent logics, theory da Costa, Russell set, universal set, schemes, axiom of separation (es)Téléchargements
In this paper we analyse da Costa's paraconsistent set theories, i.e., the set theories constructed over da Costa's paraconsistent logics C=n, 1 ≤ n ≤ ω. The main results presented here are the following. In any da Costa paraconsistent set theory of type NF the axiom schema of abstraction must be formulated exactly as in NF; for, in the contrary, some paradoxes are derivable that invalidate the theory. In any da Costa paraconsistent set theory with Russell's set [Formula Matemática] UUR is the universal set. In any da Costa paraconsistent set theory the existence of Russell's set is incompatible with a general (for all sets) formulation of the axiom schemata of separation and replacement.
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 1985
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.