Remarks on da costa's paraconsistent set theories
Parole chiave:
Paraconsistent theories, theories of sets, paraconsistent logics, theory da Costa, Russell set, universal set, schemes, axiom of separation (es)##submission.downloads##
In this paper we analyse da Costa's paraconsistent set theories, i.e., the set theories constructed over da Costa's paraconsistent logics C=n, 1 ≤ n ≤ ω. The main results presented here are the following. In any da Costa paraconsistent set theory of type NF the axiom schema of abstraction must be formulated exactly as in NF; for, in the contrary, some paradoxes are derivable that invalidate the theory. In any da Costa paraconsistent set theory with Russell's set [Formula Matemática] UUR is the universal set. In any da Costa paraconsistent set theory the existence of Russell's set is incompatible with a general (for all sets) formulation of the axiom schemata of separation and replacement.
Come citare
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Scarica citazione
Viste delle pagine degli abstract
Downloads
Licenza
Copyright (c) 1985 Revista Colombiana de Matemáticas
TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.