Assessing the phenotypic variation, heritability and genetic advance in bread wheat (Triticum aestivum L.) candidate lines grown under rainfed semi-arid region of Algeria
Evaluación de la variación fenotípica, la heredabilidad y el avance genético en líneas candidatas de trigo harinero (Triticum aestivum L.) cultivadas en una región semiárida de secano de Argelia
DOI:
https://doi.org/10.15446/rfnam.v75n3.100638Keywords:
Drought , Genetic correlation, Genetic determinism , Grain yield, Path analysis , Triticum aestivum (en)Sequía , Correlación genética , Determinismo genético , Rendimiento de grano , Análisis de ruta , Triticum aestivum (es)
Downloads
The genetic improvement of any breeding population largely depends upon the magnitude of genetic variability present. This study was carried out to estimate parameters of the genetic variation among 13 quantitative traits of bread wheat evaluated at INRAA-Setif institute (Algeria) during the 2020–2021 crop season in a rainfed environment. 34 genotypes including four control checks were planted in a randomized complete block design with three replications. Genotypes showed significant variations for almost all the studied traits. Proline content, spikes weight, and grain yield exhibited a high genotypic coefficient of variation along with moderate to high heritability coupled with a high genetic gain, suggesting the implication of additive gene action. The number of spikes, spikes weight, and thousand kernel weight were significantly and positively correlated with grain yield at both phenotypic and genotypic levels. Path analysis results showed that spikes weight is an important route through which most of the measured traits influenced indirectly grain yield. Lines L1, L20, L28, L16, and L18 exhibited a sizeable grain yield advantage, which suggests they are potential candidates for future release and could be incorporated into the wheat breeding programs as parents to improve yield in the rainfed environments of Algeria
La mejora genética de cualquier población reproductora depende en gran medida de la magnitud de la variabilidad genética presente. Este estudio se llevó a cabo para estimar parámetros de la variación genética entre 13 caracteres cuantitativos de trigo harinero evaluados en el instituto INRAASetif (Argelia) durante la temporada de cultivo 2020-2021 en ambiente de secano. 34 genotipos, incluidos cuatro testigos de control, se sembraron en un diseño de bloques completos al azar con tres repeticiones. Los genotipos mostraron variaciones significativas para casi todas las características estudiadas. El contenido de prolina, el peso de las espigas y el rendimiento de grano exhibieron un alto coeficiente de variación genotípico junto con una heredabilidad de moderada a alta junto con una alta ganancia genética, lo que sugiere la implicación de una acción génica aditiva. El número de espigas, el peso de las espigas y el peso de mil granos se correlacionaron significativa y positivamente con el rendimiento de grano tanto a nivel fenotípico como genotípico. Los resultados del análisis de ruta mostraron que el peso de las espigas resultó ser una ruta importante a través de la cual la mayoría de los rasgos medidos influyeron indirectamente en el rendimiento del grano. Las líneas L1, L20, L28, L16 y L18 exhibieron una ventaja considerable en el rendimiento de grano, lo que sugiere que son candidatas potenciales para lanzamientos futuros y podrían incorporarse en el programa de mejoramiento de trigo como progenitores para mejorar el rendimiento en ambientes de secano de Argelia.
References
Acquaah G. 2012. Principles of plant genetics and breeding. Second edition. John Wiley and Sons, Ltd, Chichester. UK. 740 p.
Al-Ashkar, Al-Suhaibani N, Abdella K, Sallam M, Alotaibi M and Seleiman MF. 2021. Combining genetic and multidimensional analyses to identify interpretive traits related to water shortage tolerance as an indirect selection tool for detecting genotypes of drought tolerance in wheat breeding. Plants 10(5): 931. https://doi.org/10.3390/plants10050931
Amanullah. 2015. Specific leaf area and specific leaf weight in small grain crops wheat, rye, barley, and oats differ at various growth stages and NPK source. Journal of Plant Nutrition 38(11): 1694–1708. https://doi.org/10.1080/01904167.2015.1017051
Araus JL, Slafer GA, Reynolds MP and Royo C. 2002. Plant breeding and drought in C3 cereals: what should we breed for?. Annals of Botany 89(7): 925–940. https://doi.org/10.1093/aob/mcf049
Awan SI, Ahmad SD, Ali MA, Ahmed MS and Rao A. 2015. Use of multivariate analysis in determining characteristics for grain yield selection in wheat. Sarhad Journal of Agriculture 31(2): 139–150. https://doi.org/10.17582/journal.sja/2015/31.2.139.150
Bajji M, Lutts S and Kinet JM. 2001. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Science 160(4): 669–681. https://doi.org/10.1016/s0168-9452(00)00443-x
Bendjama A and Ramdani S. 2022. Genetic variability of some agronomic traits in a collection of wheat (Triticum turgidum L. sp.pl.) genotypes under South Mediterranean growth conditions. Italian Journal of Agronomy 17(1): 1976. https://doi.org/10.4081/ija.2021.1976
Boudiar R, Mekhlouf A, Bachir A, Rouabhi A and Igartua, E. 2019. Assessment of early drought tolerance of algerian durum wheat reveals superiority of landraces. Egyptian Journal of Agronomy 41(3): 275–292. https://doi.org/10.21608/agro.2019.17341.1182
Chowdhury MK, Hasan MA, Bahadur MM, Islam M, Hakim M, Iqbal MA and Islam MS. 2021. Evaluation of drought tolerance of some wheat (Triticum aestivum L.) genotypes through phenology, growth, and physiological indices. Agronomy 11(9): 1792. https://doi.org/10.3390/agronomy11091792
Dewey DR and Lu KH. 1959. A correlation and path coefficient analysis of components of crested wheatgrass seed production. Agronomy Journal 51(9): 515–518. https://doi.org/10.2134/agronj1959.00021962005100090002x
Din I, Munsif F, Shah IA, Khan H, Khan FU, Ibrarullah and Islam T. 2018. Genetic variability and heritability for yield and yield associated traits of wheat genotypes in Nowshera Valley, Pakistan.Pakistan Journal of Agricultural Research 31(3): 216–222. https://doi.org/10.17582/journal.pjar/2018/31.3.216.222
Dinsa T, Mekbib F and Letta T. 2018. Genetic variability, heritability and genetic advance of yield and yield related traits of food barley (Hordeum vulgare L.) genotypes in Mid Rift Valley of Ethiopia. Advances in Crop Science and Technology 6(5): 401. https://doi.org/10.4172/2329-8863.1000401
Ene CO, Ogbonn PE, Agbo CU and Chukwudi UP. 2016. Studies of phenotypic and genotypic variation in sixteen cucumber genotypes. Chilean Journal of Agricultural Research 76(3): 307–313. https://doi.org/10.4067/s0718-58392016000300007
Farooq J, Khaliq I, Kashif M, Ali Q and Mahpara S. 2011. Genetic analysis of relative cell injury percentage and some yield contributing traits in wheat under normal and heat stress conditions. Chilean Journal of Agricultural Research 71(4): 511–520. https://doi.org/10.4067/s0718-58392011000400003
FAOSTAT. 2021. FAO soils portal. In: FAOSTAT https://www.fao.org/faostat/en/ accessed: October 2021.
Fellahi ZEA, Hannachi A, Guendouz A, Bouzerzour H and Boutekrabt A. 2013. Genetic variability, heritability and association studies in bread wheat (Triticum aestivum L.) genotypes. Electronic Journal of Plant Breeding 4(2): 1161–1166. https://ejplantbreeding.org/index.php/EJPB/article/view/377
Fellahi ZEA. 2017. Analyse génétique d’un croisement linex tester, réponse à la sélection et tolérance des stress du blé tendre (Triticum aestivum L.) sous condition semi arides (Doctoral dissertation). University of Ferhat Abbas Setif 1, Setif. Algeria. 230 p.
Fellahi ZEA, Hannachi A, Guendouz A, Rabti A and Bouzerzour H. 2019. Héritabilité, corrélations et gain de sélection précoce en F2 de blé tendre (Triticum aestivum L.) sous conditions semiarides. Journal Algérien des Régions Arides 13(2): 37–49. https://www.asjp.cerist.dz/en/article/104032
Hossain MM, Azad MAK, Alam MS, and Eaton TEJ. 2021. Estimation of variability, heritability and genetic advance for phenological, physiological and yield contributing attributes in wheat genotypes under heat stress condition. American Journal of Plant Sciences 12(04): 586–602. https://doi.org/10.4236/ajps.2021.124039
Johnson HW, Robinson HF and Comstock RE. 1955. Estimates of genetic and environmental variability in soybeans 1. Agronomy Journal 47(7): 314–318. https://doi.org/10.2134/agronj1955.00021962004700070009x
Mansouri A, Oudjehih B, Benbelkacem A, Fellahi ZEA and Bouzerzour H. 2018. Variation and relationships among agronomic traits in durum wheat [Triticum turgidum (L.) Thell. ssp. Turgidum conv. durum (Desf.) Mackey] under south Mediterranean growth conditions: Stepwise and path analyses. International Journal of Agronomy 2018: 11. https://doi.org/10.1155/2018/8191749
Mekaoussi R, Rabti A B, Fellahi ZEA, Hannachi A, Benmahammed A and Bouzerzour H. 2021. Assessment of durum wheat (Triticum durum Desf.) genotypes based on their agrophysiological characteristics and stress tolerance indices. Acta Agriculturae Slovenica 117(2): 1–16. https://doi.org/10.14720/aas.2021.117.2.2021
Mohammadi M, Sharifi P, Karimizadeh R and Shefazadeh M K. 2012. Relationships between grain yield and yield components in bread wheat under different water availability (dryland and supplemental irrigation conditions). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40(1): 195–200. https://doi.org/10.15835/nbha4017350
Monneveux P and Nemmar M. 1986. Contribution à l’étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.): étude de l’accumulation de la proline au cours du cycle de développement. Agronomie 6(6): 583–590. https://doi.org/10.1051/agro:19860611
Mwadzingeni L, Shimelis H, Dube E, Laing MD and Tsilo TJ. 2016. Breeding wheat for drought tolerance: Progress and technologies. Journal of Integrative Agriculture 15(5): 935–943. https://doi.org/10.1016/s2095-3119(15)61102-9
Ngwepe MR, Shimelis H and Mashilo J. 2021. Estimates of the variance components, heritability and genetic gains of phenotypic traits in citron watermelon (Citrullus lanatus var. citroides). Plant Breeding 140(5): 953–967. https://doi.org/10.1111/pbr.12958
Pask AJD, Pietragalla J, Mullan DM, and Reynolds MP. 2012. Physiological breeding II: A field guide to wheat phenotyping. Mexico D. F. CIMMYT. Mexico. 132 p.
Pour-Aboughadareh A, Mohammadi R, Etminan A, Shooshtari L, Maleki-Tabrizi N and Poczai P. 2020. Effects of drought stress on some agronomic and morpho-physiological traits in durum wheat genotypes. Sustainability 12(14): 5610. https://doi.org/10.3390/su12145610
Rabti A, Mekaoussi R, Fellahi ZEA, Hannachi A, Benbelkacem A, Benmahammed A and Bouzerzour H. 2020. Characterization of old and recent durum wheat [Triticum turgidum (L.) Tell. convar. durum (Desf.) Mackey] varieties assessed under south Mediterranean conditions. Egyptian Journal of Agronomy 42(3): 307–320. https://doi.org/10.21608/agro.2020.43329.1230
Regmi S, Poudel B, Ojha BR, Kharel R, Joshi P, Khanal S and Kandel BP. 2021. Estimation of genetic parameters of different wheat genotype traits in Chitwan, Nepal. International Journal of Agronomy2021: 10. https://doi.org/10.1155/2021/6651325
Robinson HF, Comstock RE and Harvey PH. 1949. Estimates of heritability and the degree of dominance in corn. Agronomy Journal 41(8): 353–359. https://doi.org/10.2134/agronj1949.00021962004100080005x
Sallam A, Alqudah AM, Dawood MF, Baenziger PS and Börner A. 2019. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International Journal of Molecular Sciences, 20(13): 3137. https://doi.org/10.3390/ijms20133137
Salehi-Lisar SY and Bakhshayeshan-Agdam H. 2016. Drought stress in plants: causes, consequences, and tolerance. In: Drought Stress Tolerance in Plants Proceeding. Springer, Berlin/Heidelberg, Germany. 16 p. https://doi.org/10.1007/978-3-319-28899-4_1
Salmi M, Benmahammed A, Benderradji L, Fellahi ZEA, Bouzerzour H, Oulmi A and Benbelkacem A. 2019. Generation means analysis of physiological and agronomical targeted traits in durum wheat (Triticum durum Desf.) cross. Revista Facultad Nacional de Agronomía Medellín 72(3): 8971–8981. https://doi.org/10.15446/rfnam.v72n3.77410
Seyoum EG and Sisay A. 2021. Genetic variability, heritability and genetic advance study in bread wheat genotypes (Triticum aestivum L.). Advances in Bioscience and Bioengineering 9(3): 81–86. https://doi.org/10.11648/j.abb.20210903.13
Shamsi K, Petrosyan M, Noor-mohammadi G, Haghparast A, Kobraee S and Rasekhi B. 2011. Differential agronomic responses of bread wheat cultivars to drought stress in the west of Iran. African Journal of Biotechnology 10(14): 2708–2715. https://doi.org/10.5897/ajb10.1133
Sivasubramanian S and Menon M. 1973. Heterosis and inbreeding depression in rice. Madras Agricultural Journal 60(7): 1139–1140.
Spagnoletti-Zeuli PL and Qualset CO. 1990. Flag leaf variation and the analysis of diversity in durum wheat. Plant Breeding 105(3): 189–202. https://doi.org/10.1111/j.1439-0523.1990.tb01196.x
Tiwari DN, Tripathi SR, Tripathi MP, Khatri N and Bastola BR. 2019. Genetic Variability and correlation coefficients of major traits in early maturing rice under rainfed lowland environments of Nepal. Advances in Agriculture 2019: 9. https://doi.org/10.1155/2019/5975901
Tutiempo Network SL. 2021. In: Tutiempo https://fr.tutiempo.net/climat/algerie.html. accessed: September 2021.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2022 Revista Facultad Nacional de Agronomía Medellín

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the author(s) to maintain the exploitation rights (copyright) of their articles without restrictions. The author(s) accept the distribution of their articles on the web and in paper support (25 copies per issue) under open access at local, regional, and international levels. The full paper will be included and disseminated through the Portal of Journals and Institutional Repository of the Universidad Nacional de Colombia, and in all the specialized databases that the journal considers pertinent for its indexation, to provide visibility and positioning to the article. All articles must comply with Colombian and international legislation, related to copyright.
Author Commitments
The author(s) undertake to assign the rights of printing and reprinting of the material published to the journal Revista Facultad Nacional de Agronomía Medellín. Any quotation of the articles published in the journal should be made given the respective credits to the journal and its content. In case content duplication of the journal or its partial or total publication in another language, there must be written permission of the Director.
Content Responsibility
The Faculty of Agricultural Sciences and the journal are not necessarily responsible or in solidarity with the concepts issued in the published articles, whose responsibility will be entirely the author or the authors.