Publicado

2023-03-24

Effect of silymarin on oxidative damage in chicken liver cell membranes

Efecto de la silimarina sobre el daño oxidativo en membranas celulares de hígado de pollo

DOI:

https://doi.org/10.15446/rfmvz.v70n1.102246

Palabras clave:

silymarin, liver, chicken, chemiluminescence (en)
silimarina, hígado, pollo, quimioluminiscencia (es)

Descargas

Autores/as

In living beings, antioxidants are of vital importance for protection against oxidative damage caused by reactive oxygen species. Silymarin (SM), a plant-derived flavonoid present in the fruits and seeds of milk thistle Silybum marianum (L.) Gaertn., has a recognized hepatoprotective effect. In this work, the in vitro silymarin antioxidant effect on non-enzymatic peroxidation (NEP) in chicken liver mitochondria and microsomes was studied. Oxidative stress in the organelles was induced by subjecting the samples (1 mg of protein) to an ascorbate-Fe++-dependent prooxidant system at 37 °C. Oxidative damage was quantified by chemiluminescence (CL) using a Packard1900 TR liquid scintillation counter (Meriden CT, USA). CL expressed as cpm (counts per minute) was read every 10 minutes to establish the course of peroxidation as a function of time. Likewise, the total cpm value (sum of the readings) was used to compare the inhibitory effect of SM using different concentrations corresponding to 6.25; 12.5, and 25 μg of the active ingredient (silymarin phosphatide) per mg of mitochondrial and microsomal protein. Controls were run simultaneously without the addition of ascorbate. Peroxidation inhibition was dependent on the concentration of SM in the incubation mixture. The results show that a protective effect on induced oxidative damage was found for all concentrations tested.

En los seres vivos, los antioxidantes son de vital importancia para la protección contra el daño oxidativo causado por las especies reactivas del oxígeno. La silimarina (SM), un flavonoide de origen vegetal presente en los frutos y semillas del cardo mariano Silybum marianum (L.) Gaertn., tiene un reconocido efecto hepatoprotector. En este trabajo se estudió el efecto antioxidante in vitro de la silimarina sobre la peroxidación no enzimática (PNE) en mitocondrias y microsomas de hígado de pollo. El estrés oxidativo en los orgánulos se indujo sometiendo las muestras (1 mg de proteína) a un sistema prooxidante dependiente de ascorbato-Fe++ a 37 °C. El daño oxidativo se cuantificó por quimioluminiscencia (QL) utilizando un contador de centelleo líquido Packard 1900 TR (Meriden CT, EE. UU.). QL expresado como cpm (recuentos por minuto) se leyó cada 10 minutos para establecer el curso de la peroxidación en función del tiempo. Asimismo, se usó el valor total de cpm (suma de las lecturas) para comparar el efecto inhibitorio de SM mediante diferentes concentraciones correspondientes a 6,25; 12,5 y 25 μg del ingrediente activo (fosfátido de silimarina) por mg de proteína mitocondrial y microsomal. Los controles se realizaron simultáneamente sin la adición de ascorbato. La inhibición de la peroxidación dependía de la concentración de SM en la mezcla de incubación. Los resultados muestran que para todas las concentraciones probadas se encontró un efecto protector sobre el daño oxidativo inducido.

 

Referencias

Armanini EH, Boiago MM, De Oliveira Cécere BG, Oliveira PV, Teixeira CJS, Strapazzon JV, Bottari NB, Silva AD, Fracasso M, Vendruscolo RG, Wagner R, Da Gloria EM, Horn VW, Mendes RE, Baldissera MD, Vedovatto M, Da Silva AS. 2021. Protective effects of silymarin in broiler feed contaminated by mycotoxins: growth performance, meat antioxidant status, and fatty acid profiles. Trop Anim Health Prod. 53(4):442. https://doi.org/10.1007/s11250-021-02873-2 DOI: https://doi.org/10.1007/s11250-021-02873-2

Detaille D, Pasdois P, Sémont A, Dos Santos P, Diolez P. 2019. An old medicine as a new drug to prevent mitochondrial complex I from producing oxygen radicals. PLoS One. 14(5):e0216385. eCollection 2019. https://doi.org/10.1371/journal.pone.0216385 DOI: https://doi.org/10.1371/journal.pone.0216385

Di Meo S, Venditti P. 2020. Evolution of the knowledge of free radicals and other oxidants. Oxid Med Cell Longev. 2020:9829176. eCollection 2020. https://doi.org/10.1155/2020/9829176 DOI: https://doi.org/10.1155/2020/9829176

Dżugan M, Tomczyk M, Sowa P, Grabek-Lejko D. 2018. Antioxidant activity as biomarker of honey variety. Molecules. 23(8):2069. https://doi.org/10.3390/molecules23082069 DOI: https://doi.org/10.3390/molecules23082069

Federico A, Dallio M, Loguercio C. 2017.Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules. 22(2):191. https://doi.org/10.3390/molecules22020191 DOI: https://doi.org/10.3390/molecules22020191

Gaschler MM, Stockwell BR. 2017. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 482(3):419-425. https://doi.org/10.1016/j.bbrc.2016.10.086 DOI: https://doi.org/10.1016/j.bbrc.2016.10.086

He L, He T, Farrar S, Ji L, Liu T, Ma X. 2017. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 44(2):532-553. https://doi.org/10.1159/000485089 DOI: https://doi.org/10.1159/000485089

Lambrecht J, Van Grunsven LA, Tacke F. 2020. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin Pharmacother. 21(13):1637-1650. https://doi.org/10.1080/14656566.2020.1774553 DOI: https://doi.org/10.1080/14656566.2020.1774553

Lawrence GD. 2021. Perspective: The Saturated fat-unsaturated oil dilemma: relations of dietary fatty acids and serum cholesterol, atherosclerosis, inflammation, cancer, and all-cause mortality. Adv Nutr. 12(3):647-656. https://doi.org/10.1093/advances/nmab013 DOI: https://doi.org/10.1093/advances/nmab013

Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y. 2015. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci. 16(11):26087-124. https://doi.org/10.3390/ijms161125942 DOI: https://doi.org/10.3390/ijms161125942

Lowry OH, Rosebrough NJ, Farr AL. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193(1):265-75. PMID: 14907713 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

MacDonald-Ramos K, Michán L, Martínez-Ibarra A, Cerbón M. 2021. Silymarin is an ally against insulin resistance. A review. Ann Hepatol. 23:100255. https://doi.org/10.1016/j.aohep.2020.08.072 DOI: https://doi.org/10.1016/j.aohep.2020.08.072

Maleki SJ, Crespo JF, Cabanillas B. 2019. Anti-inflammatory effects of flavonoids. Food Chem. 299:125124. https://doi.org/10.1016/j.foodchem.2019.125124 DOI: https://doi.org/10.1016/j.foodchem.2019.125124

Marmunti M, Gavazza M, Zeinsteger PA, Palacios A. 2016. Antioxidant Effect of Silymarin During Non-Enzymatic Peroxidation of Rat Kidney Microsomes and Mitochondria. Biochem Mol Biol Lett. 2(1):102. Disponible en: https://www.tsijournals.com/articles/antioxidant-effect-of-silymarin-during-nonenzymatic-peroxidation-of-rat-kidney-microsomes-and-mitochondria.pdf

Oddone N, Pederzoli F, Duskey JT, De Benedictis CA, Grabrucker AM, Forni F, Angela Vandelli M, Ruozi B, Tosi G. 2019. ROS responsive smart polymeric conjugate synthesis characterization and proof of concept study. Int J Pharm. 570:118655. https://doi.org/10.1016/j.ijpharm.2019.118655 DOI: https://doi.org/10.1016/j.ijpharm.2019.118655

Parcheta M, Świsłocka R, Orzechowska S, Akimowicz M, Choińska R , Lewandowski W. 2021. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials (Basel). 14(8):1984. https://doi.org/10.3390/ma14081984 DOI: https://doi.org/10.3390/ma14081984

Rajnochová Svobodová A, Zálešák B, Biedermann D, Ulrichová J, Vostálová J. 2016. Phototoxic potential of silymarin and its bioactive components. J Photochem Photobiol B. 156:61-8. https://doi.org/10.1016/j.jphotobiol.2016.01.011 DOI: https://doi.org/10.1016/j.jphotobiol.2016.01.011

Rauchová H, Kalous M, Drahota Z, Koudelová J, Mourek J.1993. Lipid peroxidation in isolated membranes of cerebral cortex, heart, and kidney. Physiol Res. 42(5):323-7. PMID: 8130178. Disponible en: http://www.biomed.cas.cz/physiolres/pdf/42/42_323.pdf

Saeed M, Babazadeh D, Arif M, Arain MA, Bhutto ZA, Shar AH, Kakar MU, Manzoor R, Chao S. 2019. Silymarin: a potent hepatoprotective agent in poultry industry. Worlds Poult Sci J. 73:483-492. https://doi.org/10.1017/S0043933917000538 DOI: https://doi.org/10.1017/S0043933917000538

Schneider WC, Hogeboom GH. 1951. Cytochemical studies of mammalian tissues; the isolation of cell components by differential centrifugation: a review. Cancer Res. 11(1):1-22. PMID: 14792549. Disponible en: https://aacrjournals.org/cancerres/article/11/1/1/472487/Cytochemical-Studies-of-Mammalian-Tissues-The

Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY. 2019. Reactive oxygen species induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019:5080843. https://doi.org/10.1155/2019/5080843 DOI: https://doi.org/10.1155/2019/5080843

Surai PF. 2015. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. antioxidants. Basel. 4(1):204-47. https://doi.org/10.3390/antiox4010204 DOI: https://doi.org/10.3390/antiox4010204

Tadolini B, Hakim G. 1996. The mechanism of iron (III) stimulation of lipid peroxidation. Free Radic Res. 25(3):221-7. https://doi.org/10.3109/10715769609149047 DOI: https://doi.org/10.3109/10715769609149047

Tangen O, Jonsson J, Orrenius S. 1973. Isolation of rat liver microsomes by gel filtration. Anal Biochem. 54:597-603. https://doi.org/10.1016/0003-2697(73)90392-8 DOI: https://doi.org/10.1016/0003-2697(73)90392-8

Trefts E, Gannon M, Wasserman DH. 2017. The liver. Curr Biol. 27(21):R1147-R1151. https://doi.org/10.1016/j.cub.2017.09.019 DOI: https://doi.org/10.1016/j.cub.2017.09.019

Van Hung P. 2016. Phenolic compounds of cereals and their Antioxidant capacity. Crit Rev Food Sci Nutr. 56(1):25-35. https://doi.org/10.1080/10408398.2012.708909 DOI: https://doi.org/10.1080/10408398.2012.708909

Wright JR, Rumbaugh RC, Colby HD. 1979. The relationship between chemiluminescence and lipid peroxidation in rat hepatic microsomes. Arch Biochem Biophys. 192(2):344-51. https://doi.org/10.1016/0003-9861(79)90102-4 DOI: https://doi.org/10.1016/0003-9861(79)90102-4

Xu T, Yue K, Zhang C, Tong X, Lin L, Cao Q, Huang S. 2021. Probiotics treatment of leg diseases in broiler chickens: a review. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-021-09869-2 DOI: https://doi.org/10.1007/s12602-021-09869-2

Zeb AJ. 2020. Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem. 44(9):e13394. https://doi.org/10.1111/jfbc.13394 DOI: https://doi.org/10.1111/jfbc.13394

Zhao H, Huang J, Li Y, Lv X, Zhou H, Wang H, Xu Y, Wang C, Wang J, Liu Z. 2020. ROS- scavenging hydrogel to promote healing of bacteria-infected diabetic wounds. Biomaterials. 258:120286. https://doi.org/10.1016/j.biomaterials.2020.120286 DOI: https://doi.org/10.1016/j.biomaterials.2020.120286

Zhong S, Li L, Shen X, Li Q, Xu W, Wang X, Tao Y, Yin H. 2019. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic Biol Med. 144:266–78. https://doi.org/10.1016/j.freeradbiomed.2019.03.036 DOI: https://doi.org/10.1016/j.freeradbiomed.2019.03.036

Cómo citar

APA

Gavazza, M. B., Marmunti, M. E. y Palacios, A. (2023). Effect of silymarin on oxidative damage in chicken liver cell membranes. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 70(1), 20–29. https://doi.org/10.15446/rfmvz.v70n1.102246

ACM

[1]
Gavazza, M.B., Marmunti, M.E. y Palacios, A. 2023. Effect of silymarin on oxidative damage in chicken liver cell membranes. Revista de la Facultad de Medicina Veterinaria y de Zootecnia. 70, 1 (mar. 2023), 20–29. DOI:https://doi.org/10.15446/rfmvz.v70n1.102246.

ACS

(1)
Gavazza, M. B.; Marmunti, M. E.; Palacios, A. Effect of silymarin on oxidative damage in chicken liver cell membranes. Rev. Med. Vet. Zoot. 2023, 70, 20-29.

ABNT

GAVAZZA, M. B.; MARMUNTI, M. E.; PALACIOS, A. Effect of silymarin on oxidative damage in chicken liver cell membranes. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, [S. l.], v. 70, n. 1, p. 20–29, 2023. DOI: 10.15446/rfmvz.v70n1.102246. Disponível em: https://revistas.unal.edu.co/index.php/remevez/article/view/102246. Acesso em: 17 jul. 2024.

Chicago

Gavazza, M. B., M. E. Marmunti, y A. Palacios. 2023. «Effect of silymarin on oxidative damage in chicken liver cell membranes». Revista De La Facultad De Medicina Veterinaria Y De Zootecnia 70 (1):20-29. https://doi.org/10.15446/rfmvz.v70n1.102246.

Harvard

Gavazza, M. B., Marmunti, M. E. y Palacios, A. (2023) «Effect of silymarin on oxidative damage in chicken liver cell membranes», Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 70(1), pp. 20–29. doi: 10.15446/rfmvz.v70n1.102246.

IEEE

[1]
M. B. Gavazza, M. E. Marmunti, y A. Palacios, «Effect of silymarin on oxidative damage in chicken liver cell membranes», Rev. Med. Vet. Zoot., vol. 70, n.º 1, pp. 20–29, mar. 2023.

MLA

Gavazza, M. B., M. E. Marmunti, y A. Palacios. «Effect of silymarin on oxidative damage in chicken liver cell membranes». Revista de la Facultad de Medicina Veterinaria y de Zootecnia, vol. 70, n.º 1, marzo de 2023, pp. 20-29, doi:10.15446/rfmvz.v70n1.102246.

Turabian

Gavazza, M. B., M. E. Marmunti, y A. Palacios. «Effect of silymarin on oxidative damage in chicken liver cell membranes». Revista de la Facultad de Medicina Veterinaria y de Zootecnia 70, no. 1 (marzo 24, 2023): 20–29. Accedido julio 17, 2024. https://revistas.unal.edu.co/index.php/remevez/article/view/102246.

Vancouver

1.
Gavazza MB, Marmunti ME, Palacios A. Effect of silymarin on oxidative damage in chicken liver cell membranes. Rev. Med. Vet. Zoot. [Internet]. 24 de marzo de 2023 [citado 17 de julio de 2024];70(1):20-9. Disponible en: https://revistas.unal.edu.co/index.php/remevez/article/view/102246

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

352

Descargas

Los datos de descargas todavía no están disponibles.