Publicado

2024-07-01

COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION

VIRUS DEL MOSAICO DEL CAUPÍ (CPMV) COMO PORTADOR DE NUEVOS DERIVADOS DE LA CLOROQUINA COMO AGENTES ANTICANCERÍGENOS, MODIFICACIÓN Y APLICACIÓN

DOI:

https://doi.org/10.15446/rev.fac.cienc.v13n2.113349

Palabras clave:

plant virus, chloroquine, drug delivery, cancer (en)
virus vegetal, cloroquina, administración de fármacos, cáncer (es)

Descargas

Autores/as

  • Rana Alrefaia University of Babylon
  • Khalda Mohee Hbeb Ministerio del Interior
  • Zainab Shakir Abdullah Al-Ali University of Basrah, Iraq

Plant virus nanoparticles (VNPs) such as  Cowpea Mosaic Virus (CPMV) can be used for a broad range of medical applications because they are inexpensive to produce, safe, biodegradable, and efficacious as treatments. Additionally, they can be easily modified chemically and genetically. Thus providing an efficient drug delivery platform can target specific cells and tissues. This paper explores the use of CPMV as epitope-carrying nanoparticles for two new chloroquine derivatives and as a new tool in breast cancer therapy. Two derivatives derived from the reaction of 4,7-dichloroquine with (doxorubicin and docetaxel) which were synthesised and fully characterized  in previous work to produce (CQ-DOX and CQ-DOC) were conjugated to the external carboxylates of CPMV. The number of each derivative has been calculated by using a florescent dye to be 87± 2 and 79±1, respectively. The effectivity of attached and unattached CQ-compounds to the CPMV,s surface was investigated by MTT assay and ADPI loaded stain, and the IC50 for each CQ-derivative with and without conjugation with CPMV was evaluated to be (70.395µg/ml for CQ-DOX and  14.384µg/ml for CQ-DOC) before modification while, cytotoxic activity enhanced after modification to be 0.015 nM and 0.038 nM respectively.

Las nanopartículas de virus vegetales (VNP), como el virus del mosaico del caupí (CPMV), se pueden utilizar para una amplia gama de aplicaciones médicas porque son económicas de producir, seguras, biodegradables y eficaces como tratamientos. Además, pueden modificarse química y genéticamente fácilmente. De este modo, proporcionar una plataforma eficiente de administración de fármacos puede apuntar a células y tejidos específicos. Este artículo explora el uso de CPMV como nanopartículas portadoras de epítopos para dos nuevos derivados de cloroquina y como una nueva herramienta en la terapia del cáncer de mama. Dos derivados derivados de la reacción de 4,7- dicloroquina con (doxorrubicina y docetaxel) que fueron sintetizados y completamente caracterizados en trabajos anteriores paraproducir (CQ-DOX y CQ-DOC) se conjugaron con los carboxilatos externos de CPMV. El número de cada derivado se calculó utilizando un tinte fluorescente y es 87 ± 2 y 79 ± 1, respectivamente. La efectividad de los compuestos CQ adheridos y no adheridos a la superficie de CPMV se investigó mediante ensayo MTT y tinción cargada con ADPI, y se evaluó que la CI50 para cada derivado de CQ con y sin conjugación con CPMV era (70,395 µg/ml para CQ -DOX y 14,384 µg/ml para CQ-DOC) antes de la modificación, mientras que la actividad citotóxica mejoró después de la modificación hasta ser 0,015 nM y 0,038 nM respectivamente.

Referencias

Agrawal, Arpita & Marianne Manchester (2012). Differential uptake of chemically modified cowpea mosaic virus nanoparticles in macrophage subpopulations present in inflammatory and tumor microenvironments. Biomacromolecules, 13(10), 3320-3326.

Aljabali, Alaa A. A., Elaine J. Barclay, Nicole F. Steinmetz, George P. Lomonossoff & David J. Evans (2012). Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid. Nanoscale, 4(18), 5640-5645.

Al-Kafage, K. M. & Al-Refai’a, R. A. K. (2022). New Synthesis of Chloroquinoline Derivatives asAnti-Cancer Agents. HIV Nursing, 22(2), 892-894.

Alkan, Hatice, İbrahim H. C., Muhammad Muddassir Ali, Omer Hazman, Recep Liman, lorica Colă & Elena Bonciu (2022). Cytotoxic and genotoxic evaluation of biosynthesized silver nanoparticles using Moringa oleifera on MCF-7 and HUVEC cell lines. Plants, 11(10), 1293.

Al-Refai’a, Rana (2018). Modified Cowpea Mosaic Virus as a Carrier of Antimalarial Drugs. Diss. University of Hull.

Al-Refai’a, Rana (2019). Cowpea Mosaic Virus (CPMV) as a Carrier Vehicle for Antimalarial Drugs, Modification, and Application. International Journal of Drug Delivery Technology, 39(3), 490-495.

Banerjee Kasturi, Sushil Kumar, Kathleen A. Ross, Shailendra Gautam, Brittany Poelaert, Mohd Wasim Nasser, Abhijit Aithal, Rakesh Bhatia, Michael J. Wannemuehler, Balaji Narasimhan, Joyce C. Solheim, Surinder K. Batra & Maneesh Jain (2018). Emerging trends in the immunotherapy of pancreatic cancer. Cancer letters, 417, 35-46.

Bayraç, Abdullah Tahir, Oya Ercan Akça, Füsun İnci Eyidoğan & Hüseyin Avni Öktem (2018). Target-specific delivery of doxorubicin to human glioblastoma cell line via ssDNA aptamer. Journal of biosciences, 43, 97-104

Beatty, Perrin H. & Lewis, J. D. (2019). Cowpea mosaic virus nanoparticles for cancer imaging and therapy. Advanced drug delivery reviews, 145, 130-144.

Bray, Freddie, Jacques Ferlay, Isabelle Soerjomataram, Rebecca L. Siegel, Lindsey A. Torre, Ahmedin Jemal (2018). Global cancer statistics (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer Journal for clinicians, 68(6), 394-424.

Cao, Bochen, Bray F., Ilbawi A. & Soerjomataram I.(2018). Effect on longevity of one-third reduction in premature mortality from non-communicable diseases by 2030: a global analysis of the Sustainable Development Goal health target. The Lancet Global Healt, 6(12), e1288-e1296.

Duval, Kayla EA, Robert J. Wagner, Veronique Beiss, Steven N. Fiering, Nicole F. Steinmetz & P. Jack Hoopes (2020). Cowpea mosaic virus nanoparticle enhancement of hypofractionated radiation in a B16 murine melanoma model. Frontiers in Oncology, 10, 594614.

El-Gowily, Afnan H., Samah A. Loutfy, Ehab MM Ali, Tarek M. Mohamed & Mohammed A. Mansour (2021). Tioconazole and chloroquine act synergistically to combat doxorubicin-induced toxicity via inactivation of PI3K/AKT/mTOR signaling mediated ROS-dependent apoptosis and autophagic flux inhibition in MCF-7 breast cancer cells. Pharmaceuticals, 14(3), 254.

Gąsiorkiewicz, Bartosz Mateusz, Paulina Koczurkiewicz-Adamczyk, Kamil Piska & Elżbieta Pękala (2021) , Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Investigational new drugs, 39 (2), 538-563.

Gurel-Gurevin, Ebru, Hulya Tuba Kiyan, Osman Behzat Burak Esener, Seyma Aydinlik, Ayca Uvez, Engin Ulukaya, Konstantinos Dimas & Elif Ilkay Armutak (2018). Chloroquine used in combination with chemotherapy synergistically suppresses growth and angiogenesis in vitro and in vivo. Anticancer research, 38(7), 4011-4020.

Hoopes, P. Jack, Wagner R. J., Duval K., Kang K., Gladstone D. J., Moodie K. L., Crary-Burney M., Ariaspulido H., Veliz F. A., Steinmetz N.F. & Fiering S. N.(2018). Treatment of canine oral melanoma with nanotechnology-based immunotherapy and radiation. Molecular pharmaceutics, 15(9), 3717-3722.

Kimura, Tomonori, Yoshitsugu Takabatake, Atsushi Takahashi & Yoshitaka Isaka (2013). Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer research, 73(1), 3-7.

Madden, Andrew J., Oberhardt, B., Lockney, D., Santos, C., Vennam, P., Arney, D., Franzen, S., Lommel, S. A., Miller, C. R., Gehrig, P. & Zamboni, W.C. (2017). Pharmacokinetics and efficacy of doxorubicin-loaded plant virus nanoparticles in preclinical models of cancer. Nanomedicine, 12(20), 2519-2532.

Patel, Ravi, Anna E. Czapar, Steven Fiering, Nancy L. Oleinick & Nicole F. Steinmetz (2018). Radiation therapy combined with cowpea mosaic virus nanoparticle in situ vaccination initiates immune-mediated tumor regression. ACS omega, 3(4), 3702-3707.

Qin, Si-Yong, Ai-Qing Zhang, Si-Xue Cheng, Lei Rong & Xian-Zheng Zhang (2017). Drug self-delivery systems for cancer therapy. Biomaterials, 112, 234-247.

Sanmartín, O., Beato, C., Suh-Oh, H.J ., Aragón, I., España, A., Majem, M., Segura, S., Gúrpide, A., Botella, R. & Grávalos, C. (2019). Clinical management of cutaneous adverse events in patients on chemotherapy: a national consensus statement by the Spanish Academy of Dermatology and Venereology and the Spanish Society of Medical Oncology. Actas Dermo-Sifiliográficas (English Edition), 110(6), 448-459.

Sun, Jia-Hui, Chong Ye, En-He Bai, Ling-Ling Zhang, Shao-Jie Huo, Hao-Han Yu, Su-Yun Xiang & Shu-Qin Yu (2018), Co-delivery nanoparticles of doxorubicin and chloroquine for improving the anti-cancer effect in vitro. Nanotechnology, 30(8), 085101.

Zhang, Kai, Zhang, Kai, Jingjing Li, Xiaofei Xin, Xiaoqing Du, Di Zhao, Chao Qin, Xiaopeng Han, Meirong Huo, Lei Yang & Lifang Yin. (2021). Dual targeting of cancer cells and MMPs with self-assembly hybrid nanoparticles for combination therapy in combating cancer. Pharmaceutics, 13(12), 1990.

Cómo citar

APA

Alrefaia, R., Mohee Hbeb, K. y Abdullah Al-Ali, Z. S. (2024). COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION. Revista de la Facultad de Ciencias, 13(2), 66–78. https://doi.org/10.15446/rev.fac.cienc.v13n2.113349

ACM

[1]
Alrefaia, R., Mohee Hbeb, K. y Abdullah Al-Ali, Z.S. 2024. COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION. Revista de la Facultad de Ciencias. 13, 2 (jul. 2024), 66–78. DOI:https://doi.org/10.15446/rev.fac.cienc.v13n2.113349.

ACS

(1)
Alrefaia, R.; Mohee Hbeb, K.; Abdullah Al-Ali, Z. S. COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION. Rev. Fac. Cienc. 2024, 13, 66-78.

ABNT

ALREFAIA, R.; MOHEE HBEB, K.; ABDULLAH AL-ALI, Z. S. COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION. Revista de la Facultad de Ciencias, [S. l.], v. 13, n. 2, p. 66–78, 2024. DOI: 10.15446/rev.fac.cienc.v13n2.113349. Disponível em: https://revistas.unal.edu.co/index.php/rfc/article/view/113349. Acesso em: 21 nov. 2024.

Chicago

Alrefaia, Rana, Khalda Mohee Hbeb, y Zainab Shakir Abdullah Al-Ali. 2024. «COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION». Revista De La Facultad De Ciencias 13 (2):66-78. https://doi.org/10.15446/rev.fac.cienc.v13n2.113349.

Harvard

Alrefaia, R., Mohee Hbeb, K. y Abdullah Al-Ali, Z. S. (2024) «COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION», Revista de la Facultad de Ciencias, 13(2), pp. 66–78. doi: 10.15446/rev.fac.cienc.v13n2.113349.

IEEE

[1]
R. Alrefaia, K. Mohee Hbeb, y Z. S. Abdullah Al-Ali, «COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION», Rev. Fac. Cienc., vol. 13, n.º 2, pp. 66–78, jul. 2024.

MLA

Alrefaia, R., K. Mohee Hbeb, y Z. S. Abdullah Al-Ali. «COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION». Revista de la Facultad de Ciencias, vol. 13, n.º 2, julio de 2024, pp. 66-78, doi:10.15446/rev.fac.cienc.v13n2.113349.

Turabian

Alrefaia, Rana, Khalda Mohee Hbeb, y Zainab Shakir Abdullah Al-Ali. «COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION». Revista de la Facultad de Ciencias 13, no. 2 (julio 1, 2024): 66–78. Accedido noviembre 21, 2024. https://revistas.unal.edu.co/index.php/rfc/article/view/113349.

Vancouver

1.
Alrefaia R, Mohee Hbeb K, Abdullah Al-Ali ZS. COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION. Rev. Fac. Cienc. [Internet]. 1 de julio de 2024 [citado 21 de noviembre de 2024];13(2):66-78. Disponible en: https://revistas.unal.edu.co/index.php/rfc/article/view/113349

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

121

Descargas

Los datos de descargas todavía no están disponibles.