COWPEA MOSAIC VIRUS (CPMV) AS A CARRIER FOR NEW CHLOROQUINE DERIVATIVES AS ANTICANCER AGENTS, MODIFICATION AND APPLICATION
VIRUS DEL MOSAICO DEL CAUPÍ (CPMV) COMO PORTADOR DE NUEVOS DERIVADOS DE LA CLOROQUINA COMO AGENTES ANTICANCERÍGENOS, MODIFICACIÓN Y APLICACIÓN
DOI:
https://doi.org/10.15446/rev.fac.cienc.v13n2.113349Palabras clave:
plant virus, chloroquine, drug delivery, cancer (en)virus vegetal, cloroquina, administración de fármacos, cáncer (es)
Descargas
Plant virus nanoparticles (VNPs) such as Cowpea Mosaic Virus (CPMV) can be used for a broad range of medical applications because they are inexpensive to produce, safe, biodegradable, and efficacious as treatments. Additionally, they can be easily modified chemically and genetically. Thus providing an efficient drug delivery platform can target specific cells and tissues. This paper explores the use of CPMV as epitope-carrying nanoparticles for two new chloroquine derivatives and as a new tool in breast cancer therapy. Two derivatives derived from the reaction of 4,7-dichloroquine with (doxorubicin and docetaxel) which were synthesised and fully characterized in previous work to produce (CQ-DOX and CQ-DOC) were conjugated to the external carboxylates of CPMV. The number of each derivative has been calculated by using a florescent dye to be 87± 2 and 79±1, respectively. The effectivity of attached and unattached CQ-compounds to the CPMV,s surface was investigated by MTT assay and ADPI loaded stain, and the IC50 for each CQ-derivative with and without conjugation with CPMV was evaluated to be (70.395µg/ml for CQ-DOX and 14.384µg/ml for CQ-DOC) before modification while, cytotoxic activity enhanced after modification to be 0.015 nM and 0.038 nM respectively.
Las nanopartículas de virus vegetales (VNP), como el virus del mosaico del caupí (CPMV), se pueden utilizar para una amplia gama de aplicaciones médicas porque son económicas de producir, seguras, biodegradables y eficaces como tratamientos. Además, pueden modificarse química y genéticamente fácilmente. De este modo, proporcionar una plataforma eficiente de administración de fármacos puede apuntar a células y tejidos específicos. Este artículo explora el uso de CPMV como nanopartículas portadoras de epítopos para dos nuevos derivados de cloroquina y como una nueva herramienta en la terapia del cáncer de mama. Dos derivados derivados de la reacción de 4,7- dicloroquina con (doxorrubicina y docetaxel) que fueron sintetizados y completamente caracterizados en trabajos anteriores paraproducir (CQ-DOX y CQ-DOC) se conjugaron con los carboxilatos externos de CPMV. El número de cada derivado se calculó utilizando un tinte fluorescente y es 87 ± 2 y 79 ± 1, respectivamente. La efectividad de los compuestos CQ adheridos y no adheridos a la superficie de CPMV se investigó mediante ensayo MTT y tinción cargada con ADPI, y se evaluó que la CI50 para cada derivado de CQ con y sin conjugación con CPMV era (70,395 µg/ml para CQ -DOX y 14,384 µg/ml para CQ-DOC) antes de la modificación, mientras que la actividad citotóxica mejoró después de la modificación hasta ser 0,015 nM y 0,038 nM respectivamente.
Referencias
Agrawal, Arpita & Marianne Manchester (2012). Differential uptake of chemically modified cowpea mosaic virus nanoparticles in macrophage subpopulations present in inflammatory and tumor microenvironments. Biomacromolecules, 13(10), 3320-3326.
Aljabali, Alaa A. A., Elaine J. Barclay, Nicole F. Steinmetz, George P. Lomonossoff & David J. Evans (2012). Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid. Nanoscale, 4(18), 5640-5645.
Al-Kafage, K. M. & Al-Refai’a, R. A. K. (2022). New Synthesis of Chloroquinoline Derivatives asAnti-Cancer Agents. HIV Nursing, 22(2), 892-894.
Alkan, Hatice, İbrahim H. C., Muhammad Muddassir Ali, Omer Hazman, Recep Liman, lorica Colă & Elena Bonciu (2022). Cytotoxic and genotoxic evaluation of biosynthesized silver nanoparticles using Moringa oleifera on MCF-7 and HUVEC cell lines. Plants, 11(10), 1293.
Al-Refai’a, Rana (2018). Modified Cowpea Mosaic Virus as a Carrier of Antimalarial Drugs. Diss. University of Hull.
Al-Refai’a, Rana (2019). Cowpea Mosaic Virus (CPMV) as a Carrier Vehicle for Antimalarial Drugs, Modification, and Application. International Journal of Drug Delivery Technology, 39(3), 490-495.
Banerjee Kasturi, Sushil Kumar, Kathleen A. Ross, Shailendra Gautam, Brittany Poelaert, Mohd Wasim Nasser, Abhijit Aithal, Rakesh Bhatia, Michael J. Wannemuehler, Balaji Narasimhan, Joyce C. Solheim, Surinder K. Batra & Maneesh Jain (2018). Emerging trends in the immunotherapy of pancreatic cancer. Cancer letters, 417, 35-46.
Bayraç, Abdullah Tahir, Oya Ercan Akça, Füsun İnci Eyidoğan & Hüseyin Avni Öktem (2018). Target-specific delivery of doxorubicin to human glioblastoma cell line via ssDNA aptamer. Journal of biosciences, 43, 97-104
Beatty, Perrin H. & Lewis, J. D. (2019). Cowpea mosaic virus nanoparticles for cancer imaging and therapy. Advanced drug delivery reviews, 145, 130-144.
Bray, Freddie, Jacques Ferlay, Isabelle Soerjomataram, Rebecca L. Siegel, Lindsey A. Torre, Ahmedin Jemal (2018). Global cancer statistics (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer Journal for clinicians, 68(6), 394-424.
Cao, Bochen, Bray F., Ilbawi A. & Soerjomataram I.(2018). Effect on longevity of one-third reduction in premature mortality from non-communicable diseases by 2030: a global analysis of the Sustainable Development Goal health target. The Lancet Global Healt, 6(12), e1288-e1296.
Duval, Kayla EA, Robert J. Wagner, Veronique Beiss, Steven N. Fiering, Nicole F. Steinmetz & P. Jack Hoopes (2020). Cowpea mosaic virus nanoparticle enhancement of hypofractionated radiation in a B16 murine melanoma model. Frontiers in Oncology, 10, 594614.
El-Gowily, Afnan H., Samah A. Loutfy, Ehab MM Ali, Tarek M. Mohamed & Mohammed A. Mansour (2021). Tioconazole and chloroquine act synergistically to combat doxorubicin-induced toxicity via inactivation of PI3K/AKT/mTOR signaling mediated ROS-dependent apoptosis and autophagic flux inhibition in MCF-7 breast cancer cells. Pharmaceuticals, 14(3), 254.
Gąsiorkiewicz, Bartosz Mateusz, Paulina Koczurkiewicz-Adamczyk, Kamil Piska & Elżbieta Pękala (2021) , Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Investigational new drugs, 39 (2), 538-563.
Gurel-Gurevin, Ebru, Hulya Tuba Kiyan, Osman Behzat Burak Esener, Seyma Aydinlik, Ayca Uvez, Engin Ulukaya, Konstantinos Dimas & Elif Ilkay Armutak (2018). Chloroquine used in combination with chemotherapy synergistically suppresses growth and angiogenesis in vitro and in vivo. Anticancer research, 38(7), 4011-4020.
Hoopes, P. Jack, Wagner R. J., Duval K., Kang K., Gladstone D. J., Moodie K. L., Crary-Burney M., Ariaspulido H., Veliz F. A., Steinmetz N.F. & Fiering S. N.(2018). Treatment of canine oral melanoma with nanotechnology-based immunotherapy and radiation. Molecular pharmaceutics, 15(9), 3717-3722.
Kimura, Tomonori, Yoshitsugu Takabatake, Atsushi Takahashi & Yoshitaka Isaka (2013). Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer research, 73(1), 3-7.
Madden, Andrew J., Oberhardt, B., Lockney, D., Santos, C., Vennam, P., Arney, D., Franzen, S., Lommel, S. A., Miller, C. R., Gehrig, P. & Zamboni, W.C. (2017). Pharmacokinetics and efficacy of doxorubicin-loaded plant virus nanoparticles in preclinical models of cancer. Nanomedicine, 12(20), 2519-2532.
Patel, Ravi, Anna E. Czapar, Steven Fiering, Nancy L. Oleinick & Nicole F. Steinmetz (2018). Radiation therapy combined with cowpea mosaic virus nanoparticle in situ vaccination initiates immune-mediated tumor regression. ACS omega, 3(4), 3702-3707.
Qin, Si-Yong, Ai-Qing Zhang, Si-Xue Cheng, Lei Rong & Xian-Zheng Zhang (2017). Drug self-delivery systems for cancer therapy. Biomaterials, 112, 234-247.
Sanmartín, O., Beato, C., Suh-Oh, H.J ., Aragón, I., España, A., Majem, M., Segura, S., Gúrpide, A., Botella, R. & Grávalos, C. (2019). Clinical management of cutaneous adverse events in patients on chemotherapy: a national consensus statement by the Spanish Academy of Dermatology and Venereology and the Spanish Society of Medical Oncology. Actas Dermo-Sifiliográficas (English Edition), 110(6), 448-459.
Sun, Jia-Hui, Chong Ye, En-He Bai, Ling-Ling Zhang, Shao-Jie Huo, Hao-Han Yu, Su-Yun Xiang & Shu-Qin Yu (2018), Co-delivery nanoparticles of doxorubicin and chloroquine for improving the anti-cancer effect in vitro. Nanotechnology, 30(8), 085101.
Zhang, Kai, Zhang, Kai, Jingjing Li, Xiaofei Xin, Xiaoqing Du, Di Zhao, Chao Qin, Xiaopeng Han, Meirong Huo, Lei Yang & Lifang Yin. (2021). Dual targeting of cancer cells and MMPs with self-assembly hybrid nanoparticles for combination therapy in combating cancer. Pharmaceutics, 13(12), 1990.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista de la Facultad de Ciencias
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la Revista de la Facultad de Ciencias, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la Revista de la Facultad de Ciencias en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/rfc/index), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la Revista de la Facultad de Ciencias para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
5. Todos los contenidos de la Revista de la Facultad de Ciencias, están publicados bajo la Licencia Creative Commons Atribución – No comercial – Sin Derivar 4.0.
MODELO DE CARTA DE PRESENTACIÓN y CESIÓN DE DERECHOS DE AUTOR