Publicado
Compuestos fenólicos obtenidos de chile (Capsicum sp.) para el control de la oxidación y el deterioro bacteriano en la carne y en productos cárnicos: revisión
Phenolic compounds obtained from chili pepper (Capsicum sp.) for the control of oxidation and bacterial spoilage in meat and meat products: A review
DOI:
https://doi.org/10.15446/acag.v73n1.116807Palabras clave:
conservantes naturales, extracción, fitoquímicos, oxidación, productos cárnicos reformulados (es)extraction, natural preservatives, oxidation, phytochemicals, reformulated meat products (en)
Descargas
Los cultivos de chile (Capsicum sp.) tienen una relevancia económica significativa a nivel global, pero también generan una gran cantidad de subproductos a lo largo de la cadena de producción, muchos de los cuales no se utilizan y representan un desafío ambiental. Recientes investigaciones destacan que estos subproductos vegetales son una fuente rica en fitoquímicos, particularmente en compuestos fenólicos, los cuales poseen propiedades antioxidantes y antimicrobianas. En paralelo, la demanda de los consumidores por alternativas más saludables a los alimentos procesados ha impulsado la búsqueda de reemplazos naturales para antioxidantes y conservantes sintéticos, como el BHA, BHT y los nitritos, los cuales se asocian con riesgos para la salud, incluidas enfermedades inflamatorias y cardiovasculares. Ingredientes de origen vegetal, como los compuestos fenólicos presentes en el chile, tienen el potencial de generar alimentos más saludables y naturales, lo que contribuye a la reducción de enfermedades crónicas, incluyendo el cáncer. Estas propiedades sugieren que el chile y sus subproductos podrían ser utilizados como aditivos naturales para reemplazar moléculas sintéticas en productos cárnicos. No obstante, su implementación a gran escala enfrenta desafíos debido a la variabilidad en los sabores, colores y aromas que el chile puede aportar, lo cual puede afectar la consistencia en la calidad de los productos cárnicos. A pesar de estas limitaciones, estudios recientes han demostrado que los chiles pueden mejorar el color, sabor y textura de los productos cárnicos, al tiempo que ofrecen estabilidad frente a la oxidación y el deterioro microbiano. Por lo tanto, los compuestos fenólicos del chile se perfilan como una alternativa prometedora a los aditivos sintéticos en la industria cárnica.
Chili pepper (Capsicum sp.) cultivation holds significant economic importance worldwide, but it also generates a substantial number of by-products throughout the production chain, many of which go unused and pose environmental challenges. Recent research has shown that these plant by-products are rich in phytochemicals, particularly phenolic compounds, which have antioxidant and antimicrobial properties. Concurrently, consumer demand for healthier alternatives to processed foods has driven the search for natural replacements for synthetic antioxidants and preservatives like BHA, BHT, and nitrites, which are associated with health risks, including inflammatory and cardiovascular diseases. Plant-based ingredients, such as the phenolic compounds found in chili peppers, have the potential to formulate healthier and more natural foods, contributing to the reduction of chronic diseases, including cancer. These properties suggest that chili peppers and their by-products could be used as natural additives to replace synthetic molecules in meat products. However, large-scale implementation is challenging due to the variability of flavors, colors, and aromas that chili peppers can impart, which may affect the consistency of meat product quality. Despite these limitations, recent studies have demonstrated that chili peppers can enhance the color, flavor, and texture of meat products while providing stability against oxidation and microbial spoilage. Therefore, phenolic compounds from chili peppers are emerging as a promising alternative to synthetic additives in the meat industry.
Referencias
Abhari, K. y Khaneghah, A. M. (2020). Alternative extraction techniques to obtain, isolate and purify proteins and bioactive from aquaculture and by-products. Advances in Food and Nutrition Research, 92, 35-52. https://doi.org/10.1016/bs.afnr.2019.12.004
Alara, O. R.; Abdurahman, N. H. y Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011
Alirezalu, K.; Hesari, J.; Yaghoubi, M.; Khaneghah, A. M.; Alirezalu, A.; Pateiro, M. y Lorenzo, J. M. (2021). Combined effects of ε-polylysine and ε-polylysine nanoparticles with plant extracts on the shelf life and quality characteristics of nitrite-free frankfurter-type sausages. Meat Science, 172, 108318. https://doi.org/10.1016/j.meatsci.2020.108318
Al Jitan, S.; Alkhoori, S. A. y Yousef, L. F. (2018). Phenolic acids from plants: Extraction and application to human health. Studies in Natural Products Chemistry, 58, 389-417. https://doi.org/10.1016/b978-0-444-64056-7.00013-1
Al Khalaf, A.; Issa, R. y Khattabi, A. (2020). Content of vitamin c, phenols and carotenoids extracted from Capsicum annuum with antioxidant, antimicrobial and coloring effects. Pakistan Journal of Biological Sciences, 23(9), 1154-1161. https://doi.org/10.3923/pjbs.2020.1154.1161
Aminzare, M.; Hashemi, M.; Ansarian, E.; Bimakr, M.; Azar, H.; Mehrasbi, M. R.; Daneshamooz, S.; Raeisi, M.; Jannat, B. y Afshari, A. (2019). Using natural antioxidants in meat and meat products as preservatives: A review. Advances in Animal and Veterinary Sciences, 7(5), 417-426. http://dx.doi.org/10.17582/journal.aavs/2019/7.5.417.426
Antonious, G. F. (2018). Capsaicinoids and vitamins in hot pepper and their role in disease therapy. InTech. https://doi.org/10.5772/intechopen.78243
Assis, M. L. D.; Gomes, M. A. G. B.; Da Cruz, L. L.; Passos, M. d. S.; Pereira, S. M.; Arantes, M.; Oliveira, D. B. y Vieira, I. J. C. (2019). Determination of antioxidant potential and quantitation of phenolic compounds by HPLC in accession of Capsicum baccatum var. pendulum. Química Nova, 42(1), 17-21. https://doi.org/10.21577/0100-4042.20170294
Azmir, J.; Zaidul, I. S. M.; Rahman, M. M.; Sharif, K. M.; Mohamed, A.; Sahena, F.; Jahurul, M. H. A.; Ghafoor, K.; Norulini, N. A. N. y Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426-436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
Blanco-Ríos, A. K.; Medina-Juárez, L. Á.; González-Aguilar, G. A. y Gámez-Meza. N. (2013). Antioxidant activity of the phenolic and oily fractions of different sweet bell peppers. Journal of the Mexican Chemical Society, 57(2), 137-143. https://doi.org/10.29356/jmcs.v57i2.226
Bellucci, E. R. B.; Munekata, P. E.; Pateiro, M.; Lorenzo, J. M. y Da Silva Barretto, A. C. (2021). Red pitaya extract as natural antioxidant in pork patties with total replacement of animal fat. Meat Science, 171, 108284. https://doi.org/10.1016/j.meatsci.2020.108284
Boler, D. D. y Woerner D. R. (2017). What is meat? A perspective from the American Meat Science Association. Animal Frontiers, 7(4), 8-11. https://doi.org/10.2527/af.2017.0436
Butnariu, M. y Sarac I. (2019). Functional Food. International Journal of Food Sciences and Nutrition, 3(3), 7-16. https://doi.org/10.14302/issn.2379-7835.ijn-19-2615
Cabral, N. O.; Oliveira, R. F.; Henry, F. C.; Oliveira, D. B.; Santos Junior, A. C.; Maia Junior, J. A. y Martins, M. L. L. (2021). Effect of the fruit aqueous extract of balloon pepper (Capsicum baccatum var. Pendulum) on lipid oxidation, microbiological quality and consumer acceptance of fresh pork sausage and smoked. Food Science and Technology, 42, 1-8. https://doi.org/10.1590/fst.09221
Careaga, M.; Fernández, E.; Dorantes, L.; Mota, L.; Jaramillo, M. E. y Hernández-Sánchez, H. (2003). Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. International Journal of Food Microbiology, 83(3), 331-335. https://doi.org/10.1016/s0168-1605(02)00382-3
Carmona-Escutia, R. P.; Urías-Silvas, J. E.; García-Parra, M. D.; Ponce-Alquicira, E.; Villanueva-Rodríguez, S. J. y Escalona-Buendia, H. B. (2019). Influence of paprika (Capsicum annuum L) on quality parameters and biogenic amines production of a ripened meat product (chorizo). Revista Mexicana de Ingeniería Química, 18(3), 949-966. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/carmona
Cerón-Carrillo, T. G.; Santiesteban-López, N. A. y Acle-Mena, R. S. (2017). Composition and antimicrobial activity of two Capsicum extracts. CIBA Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias, 5(10), 87-107. https://doi.org/10.23913/ciba.v5i10.63
Chávez-Mendoza, C.; Sánchez, E.; Muñoz-Márquez, E.; Sida-Arreola, J. P. y Flores-Cordova, M. A. (2015). Bioactive compounds and antioxidant activity in different grafted varieties of bell pepper. Antioxidants, 4(2), 427-446. https://doi.org/10.3390/antiox4020427
Chel-Guerrero, L. D.; Oney-Montalvo, J. E. y Rodríguez-Buenfil, I. M. (2021). Phytochemical characterization of by-products of habanero pepper grown in two different types of soils from Yucatán, México. Plants, 10(4), 779. https://doi.org/10.3390/plants10040779
Çinar, I. (2005). Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochemistry, 40(2), 945-949. https://doi.org/10.1016/j.procbio.2004.02.022
Cosme, P.; Rodríguez, A. B.; Espino, J. y Garrido, M. (2020). Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants, 9(12), 1263. https://doi.org/10.3390/antiox9121263
Cutrim, C. S. y Cortez, M. A. S. (2018). A review on polyphenols: Classification, beneficial effects and their application in dairy products. International Journal of Dairy Technology, 71(3), 564-578. https://doi.org/10.1111/1471-0307.12515
Das, A. K.; Islam, M. N.; Faruk, M. O.; Ashaduzzaman, M. y Dungani, R. (2020). Review on tannins: Extraction processes, applications and possibilities. South African Journal of Botany, 135, 58-70. https://doi.org/10.1016/j.sajb.2020.08.008
De Aguiar, A. C.; Da Fonseca Machado, A. P.; Angolini, C. F. F.; De Morais, D. R.; Baseggio, A. M.; Eberlin, M. N.; Maróstica, M. R. J. y Martínez, J. (2019). Sequential high-pressure extraction to obtain capsinoids and phenolic compounds from biquinho pepper (Capsicum chinense). The Journal of Supercritical Fluids, 150, 112-121. https://doi.org/10.1016/j.supflu.2019.04.016
De Oliveira-Cabral, N.; De Oliveira, R. F.; Henry, F. D. C.; De Oliveira, D. B.; Dos Santos, A. C.; De azevedo-Maia, J. y Martins, M. L. L. (2020). Effect of the extract of balloon pepper (Capsicum baccatum var. Pendulum) on lipid peroxidation and microbiology of pork sausage. Agricultural Research & Technology, 24(5), 165-167. https://doi.org/10.19080/artoaj.2020.24.556283
Dias, A. L. B.; Sergio, C. S. A.; Santos, P.; Barbero, G. F.; Rezende, C. A. y Martínez, J. (2016). Effect of ultrasound on the supercritical CO2 extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L. var. pendulum). Ultrasonics Sonochemistry, 31, 284-294. https://doi.org/10.1016/j.ultsonch.2016.01.013
Dinu, M.; Soare, R.; Hoza, G. y Băbeanu, C. (2018). Changes in phytochemical and antioxidant activity of hot pepper fruits on maturity stages, cultivation areas and genotype. South Western Journal of Horticulture, Biology and Environment, 9(2), 65-76. https://biozoojournals.ro/swjhbe/v9n2/02_swjhbe_v9n2_Dinu.pdf
Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F. J.; Zhang, W. y Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), 429. https://doi.org/10.3390/antiox8100429
Draszanowska, A.; Karpińska T. M. y Olszewska, M. A. (2021). The effect of the addition of chilli pepper fruits and refrigerated storage time on the quality of pasteurised canned meat. Czech Journal of Food Sciences, 38(5), 301-307. https://doi.org/10.17221/52/2020-cjfs
Echave, J.; Pereira, A. G.; Carpena, M.; Prieto, M. Á. y Simal-Gandara, J. (2020). Capsicum seeds as a source of bioactive compounds: Biological properties, extraction systems, and industrial application. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.91785
Efenberger-Szmechtyk M.; Nowak, A. y Czyzowska, A. (2021). Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Critical Reviews in Food Science and Nutrition, 61(1), 149-178. https://doi.org/10.1080/10408398.2020.1722060
EUR-Lex. (2008). Reglamento (CE) n. 1333/2008 del Parlamento Europeo y del Consejo de 16 de diciembre de 2008 sobre aditivos alimentarios. https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:02008R1333-20170612&from=HU
EUR-Lex. (2011). Reglamento (UE) n. 1129/2011 de la Comisión de 11 de noviembre de 2011 por el que se modifica el anexo II del Reglamento (CE) no 1333/2008 del Parlamento Europeo y del Consejo para establecer una lista de aditivos alimentarios de la Unión. https://eur-lex.europa.eu/eli/reg/2011/1129/oj?locale=es
Farahmandfar, R.; Asnaashari, M. y Sayyad, R. (2017). Antioxidant activity and total phenolic content of Capsicum frutescens extracted by supercritical CO2, ultrasound and traditional solvent extraction methods. Journal of Essential Oil Bearing Plants, 20(1), 196-204. https://doi.org/10.1080/0972060x.2017.1280420
Farahmandfar, R.; Kenari, R. E.; Asnaashari, M.; Shahrampour, D. y Bakhshandeh, T. (2019). Bioactive compounds, antioxidant and antimicrobial activities of Arum maculatum leaves extracts as affected by various solvents and extraction methods. Food Science & Nutrition, 7(2), 465-475. https://doi.org/10.1002/fsn3.815
FDA. (2020). Food for human consumption. Part 182: substances generally recognized as safe. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.10
Ferysiuk, K.; Wójciak, K. M.; Materska, M.; Chilczuk, B. y Pabich, M. (2020). Modification of lipid oxidation and antioxidant capacity in canned refrigerated pork with a nitrite content reduced by half and addition of sweet pepper extract. LWT- Food Science and Technology, 118, 108738. https://doi.org/10.1016/j.lwt.2019.108738
Flores, M. y Toldrá, F. (2021). Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products-Invited review. Meat Science, 171, 108272. https://doi.org/10.1016/j.meatsci.2020.108272
Ghafouri-Oskuei H.; Javadi, A.; Asl, M. R. S.; Azadmard D. S. y Armin, M. (2020). Quality properties of sausage incorporated with flaxseed and tomato powders. Meat Science, 161, 107957. https://doi.org/10.1016/j.meatsci.2019.107957
Granato, D.; Barba, F. J.; Bursać Kovačević, D.; Lorenzo, J. M.; Cruz, A. G. y Putnik, P. (2020). Functional foods: Product development, technological trends, efficacy testing, and safety. Annual Review of Food Science and Technology, 11(1), 93-118. https://doi.org/10.1146/annurev-food-032519-051708
Hamed, M.; Kalita, D.; Bartolo, M. E. y Jayanty, S. S. (2019). Capsaicinoids, polyphenols and antioxidant activities of Capsicum annuum: Comparative study of the effect of ripening stage and cooking methods. Antioxidants, 8(9), 364. https://doi.org/10.3390/antiox8090364
Hernández‐Pérez, T.; Gómez‐García, M. D. R.; Valverde, M. E. y Paredes‐López, O. (2020). Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Comprehensive Reviews in Food Science and Food Safety, 19(6), 2972-2993. https://doi.org/10.1111/1541-4337.12634
Holdt, S. L. y Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23(3), 543-597. https://doi.org/10.1007/s10811-010-9632-5
IARC. Red Meat and Processed Meat volume 114. Lyon, France: IARC monographs on the evaluation of carcinogenic risks to humans. 2018. ISBN 978-92-832-0180-9. Available from: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Red-Meat-And-Processed-Meat-2018
Jiménez-García, S. N.; García-Mier, L.; Ramírez-Gómez, X. S.; Guevara-González, R. G.; Aguirre-Becerra, H.; Escobar-Ortiz, A.; Contreras-Medina, L. M.; García-Trejo, J. F.; Vázquez-Cruz, M. A. y Feregrino-Pérez, A. A. (2023). Characterization of the key compounds of bell pepper by spectrophotometry and gas chromatography on the effects of induced stress on the concentration of secondary metabolite. Molecules, 28(9), 3830. https://doi.org/10.3390/molecules28093830
Kalogianni, A. I.; Lazou, T.; Bossis, I. y Gelasakis, A. I. (2020). Natural phenolic compounds for the control of oxidation, bacterial spoilage, and foodborne pathogens in meat. Foods, 9(6), 794. https://doi.org/10.3390/foods9060794
Kaur, C. y Kapoor, H. C. (2001). Antioxidants in fruits and vegetables–the millennium’s health. International Journal of Food Science & Technology, 36(7), 703-725. https://doi.org/10.1111/j.1365-2621.2001.00513.x
Kim, Y. K. (2020). Quality improvement of the chicken sausage with pepper seed (Capsicum annuum L.). Current Research in Nutrition and Food Science Journal, 8(3), 829-836. https://doi.org/10.12944/crnfsj.8.3.14
Konstantinidi, M. y Koutelidakis, A. (2019). Functional foods and bioactive compounds: A review of its possible role on weight management and obesity's metabolic consequences. Medicines, 6(3), 94. https://doi.org/10.3390/medicines6030094
Kumar, Y.; Yadav, D. N.; Ahmad, T. y Narsaiah, K. (2015). Recent trends in the use of natural antioxidants for meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 14(6), 796-812. https://doi.org/10.1111/1541-4337.12156
Lee, S.; Lee, H.; Kim, S.; Lee, J.; Ha, J.; Choi, Y.; Oh, H.; Choi, K. H. y Yoon, Y. (2018). Microbiological safety of processed meat products formulated with low nitrite concentration. A review. Asian-Australasian Journal of Animal Sciences, 31(8), 1073-1077. https://doi.org/10.5713/ajas.17.0675
Manessis, G.; Kalogianni, A. I.; Lazou, T.; Moschovas, M.; Bossis, I. y Gelasakis, A. I. (2020). Plant-derived natural antioxidants in meat and meat products. Antioxidants, 9(12), 1215. https://doi.org/10.3390/antiox9121215
Mohd, H. N.; Yusof, N. A.; Yahaya, A. F.; Mohd Rozali, N. N. y Othman, R. (2019). Carotenoids of Capsicum fruits: Pigment profile and health-promoting functional attributes. Antioxidants, 8(10), 469. https://doi.org/10.3390/antiox8100469
Movileanu, I.; De González, M. T. N.; Hafley, B.; Miller, R. K. y Keeton, J. T. (2013). Comparison of dried plum puree, rosemary extract, and BHA/BHT as antioxidants in irradiated ground beef patties. International Journal of Food Science, 2013, 1-7. https://doi.org/10.1155/2013/360732
Olaoye, O. A. (2011). Meat: An overview of its composition, biochemical changes and associated microbial agents. International Food Research Journal, 18(3), 847-855. https://www.researchgate.net/publication/277018609
Olatunji, T. L. y Afolayan, A. J. (2019). Comparative quantitative study on phytochemical contents and antioxidant activities of Capsicum annuum L. and Capsicum frutescens L. The Scientific World Journal, 2019(1), 4705140. https://doi.org/10.1155/2019/4705140
Ozaki, M. M.; Munekata, P. E. S.; Lopes, A. S.; Nascimento, M. D. S. D., Pateiro, M.; Lorenzo, J. M. y Pollonio, M. A. R. (2020). Using chitosan and radish powder to improve stability of fermented cooked sausages. Meat Science, 167, 108165. https://doi.org/10.1016/j.meatsci.2020.108165
Ozaki, M. M.; Munekata, P. E.; Jacinto-Valderrama, R. A.; Efraim, P.; Pateiro, M.; Lorenzo, J. M. y Pollonio, M. A. R. (2021). Beetroot and radish powders as natural nitrite source for fermented dry sausages. Meat Science, 171, 108275. https://doi.org/10.1016/j.meatsci.2020.108275
Panche, A. N.; Diwan, A. D. y Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
Papuc, C.; Goran, G. V.; Predescu, C. N.; Nicorescu, V. y Stefan, G. (2017). Plant polyphenols as antioxidant and antibacterial agents for shelf‐life extension of meat and meat products: Classification, structures, sources, and action Mechanisms. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1243-1268. https://doi.org/10.1111/1541-4337.12298
Pellissery, A. J.; Vinayamohan, P. G.; Amalaradjou, M. A. R. y Venkitanarayanan, K. (2020). Chapter 17. Spoilage bacteria and meat quality. En Ashim Kumar Biswas y Prabhat Kumar Mandal (Eds.), Meat Quality Analysis (pp. 307-334). Connecticut: Academic Press. https://doi.org/10.1016/B978-0-12-819233-7.00017-3
Qin, L.; Yu, J.; Zhu, J.; Kong, B. y Chen, Q. (2021). Ultrasonic-assisted extraction of polyphenol from the seeds of Allium senescens L. and its antioxidative role in Harbin dry sausage. Meat Science, 172, 108351. https://doi.org/10.1016/j.meatsci.2020.108351
Ribeiro, J. S.; Santos, M. J. M. C.; Silva, L. K. R.; Pereira, L. C. L.; Santos, I. A.; da Silva Lannes, S. C. y Da Silva, M. V. (2019). Natural antioxidants used in meat products: A brief review. Meat Science, 148, 181-188. https://doi.org/10.1016/j.meatsci.2018.10.016
Riquelme, N. y Matiacevich, S. (2017). Characterization and evaluation of some properties of oleoresin from Capsicum annuum var. cacho de cabra. CyTA-Journal of Food, 15(3), 344-351. https://doi.org/10.1080/19476337.2016.1256913
Romero-Luna, H. E.; Colina, J.; Guzmán-Rodríguez, L.; Sierra-Carmona, C. G.; Farías-Campomanes, Á. M.; García-Pinilla, S.; González-Tijera, M. M.; Malagón-Alvira, K. O. y Peredo-Lovillo, A. (2023). Capsicum fruits as functional ingredients with antimicrobial activity: An emphasis on mechanisms of action. Journal of Food Science and Technology, 60, 2725-2735. https://doi.org/10.1007/s13197-022-05578-y
Sandoval-Castro, C. J.; Valdez-Morales, M.; Oomah, B. D.; Gutiérrez-Dorado, R.; Medina-Godoy, S. y Espinosa-Alonso, L. G. (2017). Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum). Journal of Food Science and Technology, 54, 1999-2010. https://doi.org/10.1007/s13197-017-2636-2
Sowbhagya, H. B. (2019). Value-added processing of by-products from spice industry. Food Quality and Safety, 3(2), 73-80. https://doi.org/10.1093/fqsafe/fyy029
Tanase, C.; Coșarcă, S. y Muntean, D. L. (2019). A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules, 24(6), 1182. https://doi.org/10.3390/molecules24061182
Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S. y Ivić, M. (2017). Plants as natural antioxidants for meat products. IOP Conference Series Earth and Environmental Science, 85(1), 1-9. https://doi.org/10.1088/1755-1315/85/1/012030
Villasante, J.; Ouerfelli, M.; Bobet, A.; Metón, I. y Almajano, M. P. (2020). The effects of pecan shell, roselle flower and red pepper on the quality of beef patties during chilled storage. Foods, 9(11), 1692. https://doi.org/10.3390/foods9111692
Vuolo, M. M.; Lima, V. S. y Junior, M. R. M. (2019). Chapter 2. Phenolic compounds: Structure, classification, and antioxidant power. Maira Rubi Segura Campos (Ed.), Bioactive compounds (pp. 33-50). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814774-0.00002-5
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política sobre Derechos de autor:Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados.
Es decir, que aún siendo la Revista Acta Agronómica de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.