Efficiency of the multiple shoot removal technique for enhancing seed multiplication in selected commercial cassava (Manihot esculenta Crantz) varieties in Tanzania
Eficiencia de la técnica de eliminación de brotes múltiples para mejorar la multiplicación de semillas en variedades comerciales seleccionadas de yuca (Manihot esculenta Crantz) en Tanzania
DOI:
https://doi.org/10.15446/acag.v73n3.117017Palabras clave:
Cassava shootlet, high-quality planting material, micro-propagation, root induction (en)brote de yuca, inducción de raíces, material de siembra de alta calidad, micropropagación (es)
Descargas
Cassava (Manihot esculenta Crantz) is a major staple crop across Africa, Asia, and South America, where it supports the livelihoods of millions of people. However, the availability of improved planting material is constrained due to low seed propagation rates, compelling farmers to rely on local cultivars that often exhibit low yield potential and high susceptibility to diseases. Developing reliable seed multiplication techniques is therefore essential to increase the availability of improved varieties and boost cassava production. This study evaluated the effectiveness of the Multiple Shoot Removal Technique (MSRT) for the multiplication of improved cassava varieties in Tanzania. Six varieties were assessed using a completely randomized design. Growth parameters, including shoot formation, root induction, acclimatization, and field establishment, were recorded and analyzed using R statistical software. MSRT significantly increased the cassava multiplication ratio by up to five-fold compared to conventional methods. The TARRICASS4 variety showed a substantially higher multiplication rate (1:80) than the other varieties. Plantlet production efficiency was positively influenced by the shoot number and regeneration rate following ratooning, root number, and length during induction, and the survival rate of shootlets across the multiplication stages. These findings support the use of MSRT as a viable approach to enhance the availability of high-quality cassava planting materials and improve cassava production. Further research is recommended to optimize the application of plant growth regulators for improving shoot regeneration and ratoon growth performance.
La yuca (Manihot esculenta Crantz) es un cultivo alimentario de gran importancia en África, Asia y Sudamérica, que representa el sustento de millones de personas. Sin embargo, la disponibilidad de material de siembra mejorado se ve afectada por una baja tasa de propagación de semillas, lo que obliga a los agricultores a depender de variedades locales con bajo potencial de rendimiento y alta susceptibilidad a enfermedades. Es crucial desarrollar tecnologías confiables de multiplicación de semillas para aumentar la disponibilidad de variedades mejoradas e impulsar la producción de yuca. Este estudio evaluó la eficacia de la técnica de remoción de brotes múltiples (MSRT) en la multiplicación de variedades mejoradas de yuca en Tanzania. Se evaluaron seis variedades en un experimento con diseño completamente aleatorizado. Se recopilaron datos sobre los parámetros de crecimiento de la formación de brotes, la inducción de raíces, la aclimatación y el establecimiento en campo, y se analizaron posteriormente con el programa estadístico R. La MSRT quintuplicó la tasa de multiplicación de la yuca en comparación con los métodos convencionales. La variedad TARRICASS4 presentó una tasa de multiplicación sustancialmente mayor (1:80) que las otras variedades. La eficiencia productiva de las plántulas se vio influenciada positivamente por el número y la tasa de regeneración de brotes tras la soca, el número y la longitud de las raíces formadas durante la inducción, y la tasa de supervivencia de los brotes a lo largo de las etapas de multiplicación. Estos hallazgos respaldan el uso de la MSRT como un método viable para mejorar la disponibilidad de materiales de siembra de alta calidad y aumentar la producción de yuca. Se recomienda realizar nuevas investigaciones para aumentar el impacto de los reguladores de crecimiento vegetal en la mejora de la regeneración y la tasa de crecimiento de los brotes tras la soca.
Referencias
Abah, S. P.; Okoroafor, U. E.; Nsofor, G. C.; Uba, E.; Mbe, J. O.; Njoku, S. C. and Egesi, C. N. (2018). Auxins and cytokinin as a biostimulant for cassava root initiation and tuberization. Nigeria Agricultural Journal, 48(2), 165-170. https://www.ajol.info/index.php/naj/article/view/172338
Abd El-Alla, N. A. E. A. (2013). In vitro propagation of cassava plants [Doctoral dissertation]. Ain Shams University. https://doi.org/10.13140/RG.2.2.11432.60162
Akparobi, S. O.; Togun, A. O. and Ekanayake, I. J. (2003). Evaluation of the performance of twelve cassava genotypes in two agroecological zones of Nigeria using regression analysis. ASSETS SERIES A., 3, 81-89. https://www.cabidigitallibrary.org/doi/full/10.5555/20053043517
Aladele, S. E. and Kuta, D. D. (2010). Environmental and genotypic effects on the growth rate of in vitro cassava plantlet (Manihot esceulenta). African Journal of Biotechnology, 7(4), 381-385. https://www.ajol.info/index.php/ajb/article/view/58433/0
Alves, A. A. C. (2002). Cassava botany and physiology. Cassava: Biology, Production and Utilization, 1, 67-89. https://doi.org/10.1079/9780851995243.0067
Baraka, B. M. (2016). Effects of variety and storage methods of cassava planting cuttings on establishment and early growth vigour [Doctoral dissertation]. University of Nairobi. https://erepository.uonbi.ac.ke/handle/11295/98331
Bridgemohan, P. and Bridgemohan, R. S. H. (2014). Effect of initial stem nodal cutting strength on dry matter production and accumulation in cassava (Manihot esculenta Crantz). Journal of Plant Breeding and Crop Science, 6(6), 64-72. https://doi.org/10.5897/JPBCS2013.0452
Bunn, E.; Senaratna, T.; Sivasithamparam, K. and Dixon, K. W. (2005). In vitro propagation of Eucalyptus phylacis L. Johnson and K. Hill, a critically endangered relict from Western Australia. In Vitro Cellular & Developmental Biology-Plant, 41(6), 812-815. https://doi.org/10.1079/IVP2005700
Cassava Value Chain. (2024). Introduction to cassava stem: varieties, anatomy & propagation. Cassava Value Chain. https://cassavavaluechain.com/cassava-stem-care-anatomy-buds-propagation/
Chen, L.; Li, K.; Mou, X.; Liu, Z.; Jiang, H.; Mabrouk, M.; Pan, J. and Atwa, E. M. (2024). Evaluating the impact of moisture content and loading orientation on the geometrical characteristics and mechanical behavior of cassava tubers. Agronomy, 14(10), 2254. https://doi.org/10.3390/agronomy14102254
Dixon, A.; Okechukwu, R.; Akoroda, M. O.; Ilona, P.; Ogbe, F.; Mkumbira, J.; Ssemakula, G. N.; Sanni, L. O.; Lemchi, J.; Okoro, E.; Exedinma, C. I.; Patino, M.; Tarawali, G.; Maziya-Dixon, B. B. and Geteloma, C. (2005). TME/419: New cassava variety series. Unpublished manuscript. https://hdl.handle.net/10568/91920
Douthwaite, B. (2020). Development of a cassava seed certification system in Rwanda: Evaluation of CGIAR contributions to a policy outcome trajectory. International Potato Center. https://doi.org/10.4160/9789290605638
Escobar, R. H.; Hernández, C. M.; Larrahondo, N.; Ospina, G.; Restrepo, J.; Muñoz, L.; Tohme, J. and Roca, W. M. (2006). Tissue culture for farmers: Participatory adaptation of low-input cassava propagation in Colombia. Experimental Agriculture, 42(1), 103-120. https://doi.org/10.1017/S001447970500311X
Falade, K. O. and Akingbala, J. O. (2010). Utilization of cassava for food. Food Reviews International, 27(1), 51-83. https://doi.org/10.1080/87559129.2010.518296
Feyisa, A. S. (2021). Micropropagation of cassava (Manihot esculenta Crantz). Extensive Reviews, 1(1), 49-57. https://doi.org/10.21467/exr.1.1.4486
Freire, J. M.; Romano, I. S.; Souza, M. V. S. C.; Garofolo, A. C. S. and Filho, T. B. S. (2022). Forest seedlings supply for restoration of the Atlantic Forest in Rio de Janeiro, Brazil. Floresta e Ambiente, 29(3), e20210058. https://doi.org/10.1590/2179-8087-FLORAM-2021-0058
George, E. F., Hall, M. A., & Klerk, G. D. (2008). Plant propagation by tissue culture. Volume 1: the background (No. Ed. 3, pp. xi+-501).
Garcia-Oliveira, A. L.; Kimata, B.; Kasele, S.; Kapinga, F.; Masumba, E.; Mkamilo, G.; Sichalwe, C.; Bredeson, J. V.; Lyons, J. B.; Shah, T.; Muranaka, S.; Katari, M. S. and Ferguson, M. E. (2020). Genetic analysis and QTL mapping for multiple biotic stress resistance in cassava. PLoS One, 15(8), e0236674. https://doi.org/10.1371/journal.pone.0236674
Hillocks, R. J.; Thresh, J. M. and Bellotti, A. C. (Eds.). (2002). Cassava: Biology, production, and utilization. CABI Publishing.
Hlavac, M. (2022). Stargazer: Well-formatted regression and summary statistics tables. R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
Imakumbili, M. L. E.; Semu, E.; Semoka, J. M. R.; Abass, A. and Mkamilo, G. (2019). Soil nutrient adequacy for optimal cassava growth, implications on cyanogenic glucoside production: A case of konzo-affected Mtwara region, Tanzania. PLoS One, 14(5), e0216708. https://doi.org/10.1371/journal.pone.0216708
Kalu, O. and Agara, E. M. (2020). Comparative studies of four varieties of Manihot esculenta Crantz. Research Journal of Botany, 15(1), 1-5. https://doi.org/10.3923/rjb.2020.1.5
Kamer, D. D. A.; Kaynarca, G. B.; Yücel, E. and Gümüş, T. (2022). Development of gelatin/PVA based colorimetric films with a wide pH sensing range using winery solid by-product (Vinasse) for monitoring shrimp freshness. International Journal of Biological Macromolecules, 220, 627-637. https://doi.org/10.1016/j.ijbiomac.2022.08.113
Keating, B. A. and Evenson, J. P. (1979). Effect of soil temperature on sprouting and sprout elongation of stem cuttings of cassava (Manihot esculenta Crantz.). Field Crops Research, 2, 241-251. https://doi.org/10.1016/0378-4290(79)90026-1
Kidasi, P. C.; Chao, D. K.; Obudho, E. O. and Mwang'ombe, A. W. (2021). Farmers' sources and varieties of cassava planting materials in coastal Kenya. Frontiers in Sustainable Food Systems, 5, 611089. https://doi.org/10.3389/fsufs.2021.611089
Kidulile, C. E.; Alakonya, A. E.; Ndunguru, J. C. and Ateka, E. M. (2018). Cost-effective medium for in vitro propagation of Tanzanian cassava landraces. African Journal of Biotechnology, 17(25), 787-794. https://doi.org/10.5897/AJB2017.16368
Kongsil, P.; Ceballos, H.; Siriwan, W.; Vuttipongchaikij, S.; Kittipadakul, P.; Phumichai, C.; Wannarat, W.; Kositratana, W.; Vichukit, V.; Sarobol and Rojanaridpiched, C. (2024). Cassava breeding and cultivation challenges in Thailand: Past, present, and future perspectives. Plants, 13(14), 1899. https://doi.org/10.3390/plants13141899
Kumaresan, M.; Kannan, M.; Sankari, A. and Chandrasekhar, C. N. (2019). Effect of different type of stem cuttings and plant growth regulators on rooting of Jasminum multiflorum (Pink Kakada). International Journal of Chemical Studies, 7(3), 935-939. https://www.researchgate.net/publication/375584119
Ky-Dembele, C. (2011). Clonal propagation of Detarium microcarpum and Khaya senegalensis [Doctoral Thesis]. Swedish University of Agricultural Sciences. https://pub.epsilon.slu.se/id/document/1557
Matondo, D. G.; Rwegasira, G. M.; Msuya, D. G. and Mrema, E. (2025). Influence of shootlet size on cassava planting material proliferation. Journal of Research in Agriculture and Food Sciences, 2(2), 208-215. https://doi.org/10.5455/JRAFS.2025.v2.i2.16
Matovu, M.; Nankya, R.; Lwandasa, H.; Isabirye, B. E.; De Santis, P.; Jarvis, D. I. and Mulumba, J. W. (2022). Heterogeneity in nutritional and biochemical composition of cassava varieties in Uganda. Journal of Agriculture and Sustainability, 15, 1. https://infinitypress.info/index.php/jas/article/view/2078
Meibuko, N. M.; Mtui, H. D. and Baltazari, A. (2025). Effect of cassava (Manihot esculenta Crantz) varieties on leaf bud sprouting for rapid multiplication of planting materials. Frontiers in Plant Science, 15, 1453538. https://doi.org/10.3389/fpls.2024.1453538
Ministry of Agriculture. (2020). National Cassava Development Strategy 2020 – 2030. Ministry of Agriculture, United Republic of Tanzania (URT). https://kilimokwanza.org/tanzania-national-cassava-development-strategy-ncds-2020-2030/
Muktar, H.; Beshir, H. M.; Tadesse, T. and Haile, A. (2024). Rooting performance of cassava cuttings due to the number of nodes and rooting media. Food and Energy Security, 13, e512. https://doi.org/10.1002/fes3.512
Ogero, K.; Okuku, H. S.; McEwan, M.; Almekinders, C.; Kreuze, J.; Struik, P. and Van der Vlugt, R. (2023). Ratooning increases the production of sweetpotato seed vines multiplied in insect-proof net tunnels in Tanzania. Experimental Agriculture, 59, e7. https://doi.org/10.1017/S0014479723000066
Oka, M.; Limsila, J. and Sarakarn, S. (1987). Relationship between characteristics and germination ability of cuttings in cassava (Manihot esculenta Crantz). JARQ: Japan Agricultural Research Quarterly, 21(1), 70-75. https://www.jircas.go.jp/sites/default/files/publication/jarq/21-1-070-075_0.pdf
Oladejo, O. A. and Sikiru, G. K. (2019). Storage effects on cassava planting material quality and subsequent viability and germination. International Journal of Pure and Applied Science, 17, 9. https://www.cambridgenigeriapub.com/wp-content/uploads/2020/06/CJPAS_Vol17_No9-13.pdf
Oliveira, A. P. D.; Bagaldo, A. R.; Loures, D. R. S.; Bezerra, L. R.; Moraes, S. A.; Yamamoto, S. M.; Araújo, F. L.; Cirne, L. G. and Oliveira, R. L. (2018). Effect of ensiling gliricidia with cassava on silage quality, growth performance, digestibility, ingestive behavior and carcass traits in lambs. Animal Feed Science and Technology, 241, 198-209. https://doi.org/10.1016/j.anifeedsci.2018.05.004
Ospina, P. B.; Segovia, R. J. and Bedoya, A. (2007). Micro-propagation of cassava plants through the temporary immersion system and hardening of massive numbers of cassava vitroplants (pp. 161-173). In Howeler, R. H. (Ed.), Cassava research and development in Asia: Exploring new opportunities for an ancient crop: Proceedings of the seventh regional workshop held in Bangkok, Thailand, Oct 28-Nov 1, 2002. Centro Internacional de Agricultura Tropical (CIAT), Cassava Office for Asia, Bangkok, TH. https://core.ac.uk/download/pdf/132666903.pdf#page=167
Otekunrin, O. and Sawicka, B. (2019). Cassava, a 21st-century staple crop: How can Nigeria harness its enormous trade potential? Acta Scientific Agriculture, 3(8), 194-202. https://doi.org/10.31080/ASAG.2019.03.0586
Phoncharoen, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P. and Hoogenboom, G. (2019). Growth rates and yields of cassava at different planting dates in a tropical savanna climate. Scientia Agricola, 76(5), 376-388. https://doi.org/10.1590/1678-992X-2017-0413
Pierret, A.; Maeght, J. L.; Clément, C.; Montoroi, J. P.; Hartmann, C. and Gonkhamdee, S. (2016). Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research. Annals of botany, 118(4), 621-635. https://doi.org/10.1093/aob/mcw130
Sarkiyayi, S. and Agar, T. M. (2010). Comparative analysis on the nutritional and anti-nutritional contents of the sweet and bitter cassava varieties. Advance Journal of Food Science and Technology, 2(6), 328-334. https://www.airitilibrary.com/Article/Detail/20424876-201011-201601260018-201601260018-328-334
Schoffel, A.; Lopes, S. J.; Koefender, J.; Camera, J. N.; Golle, D. P. and Lúcio, A. D. (2022). Characteristics and production of cassava stem cuttings for rapid multiplication method. HOLOS, 38(2), e10326. https://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/10326
Sheat, S.; Mushi, E.; Gwandu, F.; Sikirou, M.; Baleke, P.; Kayondo, S. I.; Kulembeka, H.; Adetoro, N. and Winter, S. (2024). Cut, root, and grow: Simplifying cassava propagation to scale. Plants, 13(4), 471. https://doi.org/10.3390/plants13040471
Shiji, R.; George, J.; Sunitha, S. and Muthuraj, R. (2014). Micropropagation for rapid multiplication of planting material in cassava (Manihot esculenta Crantz). Journal of Root Crops, 40(1), 23-30. https://journal.isrc.in/index.php/jrc/article/view/229
Silva, R. S.; Moura, E. F.; Farias, N. J. T. and Sampaio, J. E. (2016). Genetic parameters and agronomic evaluation of cassava genotypes. Pesquisa Agropecuária Brasileira, 51(7), 834-841. https://www.scielo.br/j/pab/a/59Wdn44Jc6SKfh8tnRJctXL/?lang=en
Sukmadjaja, D. and Widhiastuti, H. (2011). Effects of plant growth regulators on shoot multiplication and root induction of cassava varieties culture in vitro. Biotropia, 18(1), 50-60. https://doi.org/10.11598/btb.2011.18.1.138
Tarawali, G.; Ilona, P.; Ojiako, I. A.; Iyangbe, C.; Ogundijo, D. S.; Asumugha, G. N. und Udensi, U. E. (2013). A comprehensive training module on competitive cassava production. International Institute of Tropical Agriculture (IITA). https://cgspace.cgiar.org/bitstreams/b5bb8c4a-f233-45c3-a89e-1db324951146/download
Vigl, F. and Rewald, B. (2014). Size matters? – The diverging influence of cutting length on growth and allometry of two Salicaceae clones. Biomass and Bioenergy, 60, 130-136. https://doi.org/10.1016/j.biombioe.2013.11.020
Wang, W.; Hostettler, C. E.; Damberger, F. F.; Kossmann, J.; Lloyd, J. R. and Zeeman, S. C. (2018). Modification of cassava root starch phosphorylation enhances starch functional properties. Frontiers in Plant Science, 9, 1562. https://doi.org/10.3389/fpls.2018.01562
Wang, Y.; Dong, W.; Saha, M. C.; Udvardi, M. K. and Kang, Y. (2021). Improved node culture methods for rapid vegetative propagation of switchgrass (Panicum virgatum L.). BMC Plant Biology, 21, 128. https://doi.org/10.1186/s12870-021-02903-z
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política sobre Derechos de autor:Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados.
Es decir, que aún siendo la Revista Acta Agronómica de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.














