Agro-industrial organic fertilizers for bell pepper (Capsicum annuum L.) growth and nutrition
Fertilizantes orgánicos agroindustriales para el crecimiento y la nutrición del pimiento (Capsicum annuum L.)
DOI:
https://doi.org/10.15446/acag.v73n3.119169Palabras clave:
spent mushroom substrate, Elaeis guineas, Agave sisalana, Pleurotus ostreatus, plant growth, nutrition (en)Agave sisalana, crecimiento vegetal, nutrición vegetal, Elaeis guineensis, Pleurotus ostreatus, sustrato poscultivo de hongos (es)
Descargas
Agro-industrial wastes can be transformed into low-cost agricultural inputs while mitigating environmental risks associated with improper disposal. Bell pepper (Capsicum annuum L.) is a vegetable of high economic importance, widely consumed in Brazil and worldwide. This study evaluated the effect of organic fertilizers derived from agro-industrial wastes on bell pepper cultivation in two soil types: Dystrophic Yellow Oxisol and Quartizarenic Neosol. Two fertilizers were tested: PSSD, made with spent mushroom substrate from oil palm waste combined with compost from the dairy industry, and SSSD, produced with spent mushroom substrate from sisal waste combined with the same compost. Fertilizer doses ranged from 0 to 60 t ha⁻¹, alongside a chemical fertilizer treatment (60 N, 300 P, 240 K kg ha⁻¹). Plant growth parameters, including height, stem diameter, number of leaves, flowers, fruits, and biomass, were assessed. Nutrient concentrations (N, P, K, Ca, Mg, S) were measured at flowering (45 days after transplanting). Although chemical fertilization improved initial plant development, it resulted in lower fruit yields. Organic fertilizers, particularly PSSD and SSSD at 60 t ha⁻¹, significantly increased plant biomass and nutrient content, enhancing fruit yield by 62 % compared to chemical fertilization in Quartizarenic Neosol. Organic fertilization with these materials, starting at 30 t ha⁻¹, promoted greater dry matter accumulation and productivity. Overall, the study demonstrates the potential of PSSD and SSSD as sustainable fertilizers for bell pepper production, especially in sandy soils such as Quartizarenic Neosol.
Los residuos agroindustriales pueden transformarse en insumos agrícolas de bajo costo, mitigando los riesgos ambientales asociados con su disposición inadecuada. El pimiento (Capsicum annuum L.) es una hortaliza de alta relevancia económica, ampliamente consumida en Brasil y a nivel mundial. Este estudio evaluó el efecto de fertilizantes orgánicos derivados de residuos agroindustriales en el cultivo de pimiento en dos tipos de suelo: latossolo amarillo distrófico y neosol cuartzarénico. Se probaron dos fertilizantes: PSSD, elaborado con sustrato poscultivo de hongos a partir de residuos de palma de aceite combinado con compost de la industria láctea, y SSSD, con sustrato poscultivo de hongos a partir de residuos de sisal combinado con el mismo compost. Las dosis de fertilizante oscilaron entre 0 y 60 t ha⁻¹, junto con un tratamiento de fertilización química (60 N, 300 P, 240 K kg ha⁻¹). Se evaluaron parámetros de crecimiento vegetal como altura, diámetro del tallo, número de hojas, flores, frutos y biomasa. Las concentraciones de nutrientes (N, P, K, Ca, Mg, S) se midieron durante la floración (45 días después del trasplante). Aunque la fertilización química mejoró el desarrollo inicial de las plantas, resultó en menor rendimiento de frutos. Los fertilizantes orgánicos, particularmente PSSD y SSSD a 60 t ha⁻¹, incrementaron significativamente la biomasa vegetal y el contenido de nutrientes, mejorando el rendimiento de los frutos en un 62 % en comparación con la fertilización química en neosol cuartzarénico. La fertilización orgánica con estos materiales, comenzando a partir de 30 t ha⁻¹, resultó en un volumen mayor de materia seca y una mayor productividad. El estudio demuestra el potencial de los fertilizantes PSSD y SSSD para la producción sostenible de pimiento, especialmente en suelos arenosos como el neosol cuartzarénico.
Referencias
Abreu, C. G.; Costa, L. M. A. S.; Collela, C. F.; Castro, C. P.; Zied, D. C. and Dias, E. S. (2020). Spent mushroom substrate Agaricus bisporus in the production of pepper seedlings. Scientia Agraria Paranaensis, 19(2), 161-167. https://doi.org/10.18188/sap.v19i2.23812
Albuquerque, F. S.; Silva, E. F. F.; Bezerra Neto, E.; Souza, A. E. R. and Santos, A. N. (2012). Mineral nutrients in fertigated sweet pepper under irrigation depths and potassium doses. Horticultura Brasileira, 30(4), 681-687. https://doi.org/10.1590/S0102-05362012000400019
Alcarde, J. C. (2009). Manual de análise de fertilizantes. FEALQ.
Almeida, A. T.; Peixoto, C. P.; Vieira, E. L.; Oliveira, E. R.; Santos, C. A. C.; Santos, J. M; Castro, A. M. P. B. and Pereira, V. S. (2021). Índices biométricos de genótipos de amendoim produzido por agricultores do Recôncavo da Bahia. Brazilian Journal of Development, 7(5), 49578-49598. https://doi.org/10.34117/bjdv.v7i5.29937
Amalfitano, C.; Del Vacchio, L.; Somma, S.; Cucinello, A. and Caruso, G. (2017). Effects of cultural cycle and nutrient solution electrical conductivity on plant growth, yield and fruit quality of ‘Friariello’ pepper grown in hydroponics. Horticultural Science, 44(2), 91-98. https://doi.org/10.17221/172/2015-HORTSCI
Carmo, C. O.; Rodrigues, M. S.; Silva, F.; Irineu, T. G. M. and Soares, A. C. F. (2021). Spent mushroom substrate of Pleurotus ostreatus kummer increases basil biomass and essential oil yield. Revista Caatinga, 34(3), 548-558. https://doi.org/10.1590/1983-21252021v34n306rc
Conti, S.; Villari, G.; Faugno, S.; Melchionna, G.; Somma, S. and Caruso, G. (2014). Effects of organic vs. conventional farming system on yield and quality of strawberry grown as an annual or biennial crop in southern Italy. Scientia Horticulturae, 180, 63-71. https://doi.org/10.1016/j.scienta.2014.10.015
Faithfull, N. T. (2002). Methods in agricultural chemical analysis: A practical handbook. CABI Publishing.
Godoy, L. J. G.; Villas Bôas, R. L. and Büll, L. T. (2003). Use of chlorophyll meter readings in the management of nitrogen fertilization in bell pepper plants. Revista Brasileira de Ciência do Solo, 27(6), 1049-1056. https://doi.org/10.1590/S0100-06832003000600009
Gougoulias, C.; Clark, J. M. and Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362-2371. https://doi.org/10.1002/jsfa.6577
Hackett, R. (2015). Spent mushroom compost as a nitrogen source for spring barley. Nutrient Cycling in Agroecosystems, 102, 253-263. https://doi.org/10.1007/s10705-015-9696-3
Jones, J. J. B. (2001). Laboratory guide for conducting soil tests and plant analysis (1st ed.). CRC Press. https://doi.org/10.1201/9781420025293
Lima, N. S.; Silva, E. F. F.; Menezes, D; Camara, T. R. and Willadino, L. G. (2018). Fruit yield and nutritional characteristics of sweet pepper grown under salt stress in hydroponic system. Revista Caatinga, 31(2), 297-305. https://doi.org/10.1590/1983-21252018v31n205rc
Lopes, R. X.; Zied, D. C.; Martos, E. T.; Souza, R. J.; Silva, R. and Dias, E. S. (2015). Application of spent Agaricus subrufescens compost in integrated production of seedlings and plants of tomato. International Journal of Recycling Organic Waste in Agriculture, 4(3), 211-218. https://doi.org/10.1007/s40093-015-0101-7
Lopes, S. M.; Alcantra, E.; Rezende, R. M. and Freitas, A. S. (2018). Pepper fruits evaluation submitted to bagging in organic farming. Revista da Universidade Vale do Rio Verde, 16(1), 4922. https://doi.org/10.5892/ruvrd.v16i1.4922
Lou, Z.; Sun, Y.; Zhou, X.; Baig, S. A.; Hu, B. and Xu, X. (2017). Composition variability of spent mushroom substrates during continuous cultivation, composting process, and their effects on mineral nitrogen transformation in soil. Geoderma, 307, 30-37. https://doi.org/10.1016/j.geoderma.2017.07.033
Lou, Z.; Zhu, J.; Wang, Z.; Baig, S. A.; Fang, L.; Hu, B. and Xu, X. (2015). Release characteristics and control of nitrogen, phosphate, organic matter from spent mushroom compost amended soil in a column experiment. Process Safety and Environmental Protection, 98, 417-423. https://doi.org/10.1016/j.psep.2015.10.003
Marcussi, F. F. N. (2005). Fertigation application and macronutrients concentrations in plant of bell pepper. Engenharia Agrícola, 25(3), 642-650. https://www.scielo.br/j/eagri/a/HF5gXkBq5hyD6cHpDpknjrq/?format=html&lang=pt
Mendes, K. L. F.; Vieira, H.; Pereira Jr, E. B.; Moreira, J. N.; Vale, K. S.; Caiana, C. R. A.; Bezerra Neto, F. C.; Medeiros, A. C. and Maracajá, P. B. (2020). Produção de pimentão cultivado com pó de pedra e esterco em região semiárida. Research, Society and Development, 9(7), e487974360. https://doi.org/10.33448/rsd-v9i.4360
Mohd Hanafi, F. H.; Rezania, S.; Mat Taib, S.; Md Din, M. F.; Yamauchi, M.; Sakamoto, M.; Hara, H.; Park, J. and Ebrahimi, S. S. (2018). Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): An overview. Journal of Material Cycles and Waste Management, 20, 1383-1396. https://doi.org/10.1007/s10163-018-0739-0
Moreira, F. M.; Nóbrega, R. S. A.; Santos, R. P.; Silva, C. C. and Nóbrega, J. C. A. (2018). Cultivation of Caesalpinia pulcherrima L. SW. in regional substrates. Revista Árvore, 42(2), e420212. https://doi.org/10.1590/1806-90882018000200012
Ogunlade, I.; Alebiosu, A. A. and Osasona, A. I. (2013). Proximate, mineral composition, antioxidant activity, and total phenolic content of some pepper varieties (Capsicum species). International Journal of Biological and Chemical Sciences, 6(5), 2221-2227. https://doi.org/10.4314/ijbcs.v6i5.28
Oliveira, E. C. (2020). Viabilidade do uso de material de descarte da indústria láctea como componente de substrato e sua relação com inoculantes na produção de mudas de leucena [Master’s thesis]. Universidade Federal do Recôncavo da Bahia. https://www.ufrb.edu.br/pgcienciasagrarias/images/DISSERTA%C3%87%C3%83O_-_PPGMA_-_PPGCAG_-_Elielva_Cardoso_de_Oliveira.pdf
Oliveira, J. B. (2008). Pedologia aplicada (3ª ed.). FEALQ.
Padilla, F. M.; Souza, R.; Peña-Fleitas, M. T.; Gallardo, M.; Giménez, C and Thompson, R. B. (2018). Different responses of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Frontiers in Plant Science, 9, 1752. https://doi.org/10.3389/fpls.2018.01752
Peixoto, C. P. (2020). Princípios de fisiologia vegetal: teoria e prática. PoD Editora.
Roy, S.; Barman, S.; Chakraborty, U. and Chakraborty, B. (2015). Evaluation of spent mushroom substrate as biofertilizer for growth improvement of Capsicum annuum L. Journal of Applied Biology & Biotechnology, 3(3), 22-27. https://doi.org/10.7324/JABB.2015.3305
Shehata, S. A.; El-Mogy, M. M. and Mohamed, H. F. Y. (2018). Postharvest quality and nutrient contents of long sweet pepper enhanced by supplementary potassium foliar application. International Journal of Vegetable Science, 25(2), 196-209. https://doi.org/10.1080/19315260.2018.1523816
Silva, G. C. C.; Puiatti, M.; Cecon, P. R. and Freitas, A. R. J. (2017). Growth, yield and nitrate accumulation in fruits of cucumber fertilized with sources of nitrogen fertilizers. Agrária - Revista Brasileira de Ciências Agrárias, 12(2), 179-184. https://doi.org/10.5039/agraria.v12i2a5441
Silva, R. M.; Carmo, C. O.; Oliveira, T. A. S.; Figueirêdo, V. R.; Duarte, E. A. A. and Soares, A. C. F. (2020). Biological efficiency and nutritional value of Pleurotus ostreatus cultivated in agroindustrial wastes of palm oil fruits and cocoa almonds. Arquivos do Instituto Biológico, 87, e0852018. https://doi.org/10.1590/1808-1657000852018
Singh, C.; Pathak, P.; Chaudhary, N.; Rathi, A.; Dehariya, P. and Vyas, D. (2020). Mushrooms and mushroom composts in integrated farm management. Research Journal of Agricultural Sciences, 11(6), 1436-1443. https://www.researchgate.net/publication/345669937_Mushrooms_and_Mushroom_Composts_in_Integrated_Farm_Management
Siqueira, O. A. P. A.; Martins, O. G. and Andrade, M. C. N. (2019). Straw from different sorghum varieties in the formulation of new compounds for the cultivation of Pleurotus ostreatus. Revista em Agronegócio e Meio Ambiente, 12(1), 273-285. https://doi.org/10.17765/2176-9168.2019v12n1p273-285
Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39, 971-974. https://doi.org/10.1021/ac60252a045
Zhu, H.; Zhao, S.; Yang, J.; Meng, L.; Luo, Y.; Hong, B.; Cui, W.; Wang, M. and Liu, W. (2018). Growth, nutrient uptake, and foliar gas exchange in pepper cultured with un-composted fresh spent mushroom residue. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 227-236.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política sobre Derechos de autor:Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados.
Es decir, que aún siendo la Revista Acta Agronómica de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.














