Published

2023-07-31

Fatty acid composition in Ocotea caudata (Nees) Mez (Lauraceae) fruits from Colombia

Composición de ácidos grasos en frutos de Ocotea caudata (Nees) Mez (Lauraceae) procedentes de Colombia

DOI:

https://doi.org/10.15446/acag.v71n4.105631

Keywords:

Fatty acids, fruits, Lauraceae, Lauric acid, Ocotea caudata (en)
ácidos grasos, frutos, Lauraceae, ácido laurico, Ocotea caudata (es)

Downloads

Authors

The genus Ocotea of the Lauraceae family has species whose wood is employed in construction and for other purposes including as biofuel, for disinfection, cosmetics, and in the treatment of various diseases. Studies regarding Ocotea caudata’s phytochemical and pharmacognostic uses are scarce, thus, this work is the first to study its fruits. O. caudata (Nees) Mez fruits from Colombia were investigated for their oil content. Heptane extraction from O. caudata fruit oil yielded 54.9 % of total lipids, where the fatty acid composition was determined. The oil analysis by gas chromatography with flame ionization detection (GC-FID) demonstrated that lauric acid was the most abundant fatty acid (51.7 %, C12:0). In addition to lauric acid, oleic acid (23.6 %, C18:1) and palmitic acid (16.6 %, C16:0) were found. The fatty acid composition was confirmed by gas chromatography-mass spectrometry (GC-MS). O. caudata can be considered as a species that accumulates medium-chain saturated fatty acids (C12) and long-chain unsaturated fatty acids (C18). In conclusion, many of its health benefits may be due to its high content of lauric acid. Therefore, this oil is highly regarded for its nutritional and health properties.

En la familia de las Lauraceae el género Ocotea presenta especies como fuentes de madera para la construcción, la ebanistería, el biocombustible, la desinfección, la cosmética y para el tratamiento de diversas enfermedades. Ocotea caudata tiene pocos estudios fitoquímicos y farmacognósticos: este trabajo es el primero que estudia los frutos de esta especie. Los frutos de O. caudata (Nees) Mez de Colombia fueron investigados por su contenido de aceite. La extracción con heptano del aceite de los frutos de O. caudata arrojó un 54.9 % de lípidos totales y se determinó la composición de ácidos grasos. El análisis GC-FID (Gas Chromatography Flame Ionization Detector) del aceite indicó que el ácido láurico es el ácido graso más abundante en el aceite (51.7 %, C12:0). Además del ácido láurico, se encontró ácido oleico (23.6 %, C18:1) y ácido palmítico (16.6 %, C16:0). El ácido láurico se considera fuente de numerosos beneficios para la salud. Por lo tanto, el alto contenido de ácido láurico en O. caudata ofrece la posibilidad de utilizar este aceite como componente importante en usos nutricionales y de salud. O. caudata puede considerarse una especie que acumula ácidos grasos saturados de cadena media (C12) y ácidos grasos insaturados de cadena larga (C18).

References

AOAC (2012). 948.22-1948, Fat (crude) in nuts and nut products. Gravimet. In AOAC (Ed.), Official Methods of Analysis, 19th ed. AOAC International. http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=588

Badami, R. C. and Patil, K. B. (1980). Structure and occurrence of unusual fatty acids in minor seed oils. Progress in Lipid Research, 19(3-4), 119-153. https://doi.org/10.1016/0163-7827(80)90002-8

Barlina, R.; Dewandari, K. T.; Mulyawanti, I. and Herawan, T. (2022). Chapter 30 - Chemistry and composition of coconut oil and its biological activities. In Mariod, A. A. (Ed.), Multiple Biological Activities of Unconventional Seed Oils (pp. 452). Academic Press. https://doi.org/10.1016/B978-0-12-824135-6.00025-8

Chanderbali, A. S.; van der Werff, H. and Renner, S. S. (2001). Phylogeny and historical biogeography of Lauraceae: Evidence from the chloroplast and nuclear genomes. Annals of the Missouri Botanical Garden, 88(1), 104–134. https://doi.org/10.2307/2666133

Currenti, W.; Godos, J.; Alanazi, A. M.; Lanza, G.; Ferri, F.; Caraci, F.; Grosso, G.; Galvano, F. and Castellano, S. (2023). Dietary fats and cognitive status in Italian middle-old adults. Nutrients, 15(6), 1429. https://doi.org/10.3390/nu15061429

Da Silva, J. K.; da Trindade, R.; Moreira, E. C.; Maia, J. G. S.; Dosoky, N. S.; Miller, R. S.; Cseke, L. J. and Setzer, W. N. (2017). Chemical diversity, biological activity, and genetic aspects of three Ocotea species from the Amazon. International Journal of Molecular Sciences, 18(5), 1081. https://doi.org/10.3390/ijms18051081

De Roos, N. M.; Schouten, E. G. and Katan, M. B. (2001). Consumption of a solid fat rich in lauric acid results in a more favorable serum lipid profile in healthy men and women than consumption of a solid fat rich in trans-fatty acids. The Journal of Nutrition, 131(2), 242-245. https://doi.org/10.1093/jn/131.2.242

Dodds, E. D.; McCoy, M. R.; Rea, L. D. and Kennish, J. M. (2005). Gas chromatographic quantification of fatty acid methyl esters: Flame ionization detection vs. electron impact mass spectrometry. Lipids, 40(4), 419-428. https://doi.org/10.1007/s11745-006-1399-8

Garcez, F. R.; da Silva, A. G. F.; Garcez, W. S.; Linck, G.; Matos, M. C. F.; Santos, E. C. and Queiroz, L. M. M. (2011). Cytotoxic aporphine alkaloids from Ocotea acutifolia. Planta Medica, 77(4), 383-387. https://doi.org/10.1055/s-0030-1250401

Gottlieb, O. R. (1972). Chemosystematics of the lauraceae. Phytochemistry, 11(5), 1537-1570. https://doi.org/10.1016/0031-9422(72)85001-5

Hopkins, C. Y.; Chisholm, M. J. and Prince, L. (1966). Fatty acids of Lindera umbellata and other Lauraceae seed oils. Lipids, 1(2), 118-122. https://doi.org/10.1007/BF02533002

Kotoky, R.; Pathak, M. G. and Kanjilal, P. B. (2007). Physico-chemical characteristics of seed oils of some Litsea species found in North-East India. Natural Product Radiance, 6(4), 297-300. https://nopr.niscpr.res.in/bitstream/123456789/7874/1/NPR%206(4)%20297-300.pdf

Lieberman, S.; Enig, M. G. and Preuss, H. G. (2006). A review of monolaurin and lauric ccid: Natural virucidal and bactericidal agents. Alternative and Complementary Therapies, 12(6), 310-314. https://doi.org/10.1089/act.2006.12.310

Liebert, M. A. (1987). 3. Final report on the safety assessment of oleic acid, lauric acid, palmitic acid, myristic acid, and stearic acid. Journal of the American College of Toxicology, 6(3), 321-401. https://doi.org/10.3109/10915818709098563

Litchfield, C. (1971). Positional distribution of medium chain length fatty acids in dicotyledon seed triglycerides. Chemistry and Physics of Lipids, 6(2), 200-204. https://doi.org/10.1016/0009-3084(71)90042-9

Marques, C. A. (2012). Importância econômica da família Lauraceae Lindl. Floresta e Ambiente, 8(1), 195-206. http://www.floram.org/article/588e21fae710ab87018b45cf

McConnell, B. O. and Farag, I. H. (2013). Kinetics study of the solvent extraction of lipids from Chlorella vulgaris. International Journal of Engineering and Technical Research (IJETR), 1(10), 28-37. https://www.erpublication.org/published_paper/IJETR012016.pdf

Metcalfe, L. D.; Schmitz, A. A. and Pelka, J. R. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical Chemistry, 38(3), 514-515. https://doi.org/10.1021/ac60235a044

Monte Neto, R. L.; Sousa, M. A.; Dias, C. S.; Barbosa Filho, J. M. and Oliveira, M. R. (2008). Yangambin cytotoxicity: A pharmacologically active lignan obtained from Ocotea duckei Vattimo (Lauraceae). Zeitschrift Für Naturforschung C, 63(9-10), 681-686. https://doi.org/10.1515/znc-2008-9-1012

Montrucchio, D. P.; Miguel, O. G.; Zanin, S. M. W.; da Silva, G. A.; Cardozo, A. M. und Santos, A. R. S. (2012). Antinociceptive effects of a chloroform extract and the alkaloid dicentrine isolated from fruits of Ocotea puberula. Planta Medica, 78(14), 1543-1548. https://doi.org/10.1055/s-0032-1315026

Nitbani, F. O.; Tjitda, P. J. P.; Nitti, F.; Jumina, J. and Detha, A. I. R. (2022). Antimicrobial properties of lauric acid and monolaurin in virgin coconut oil: A review. ChemBioEng Reviews, 9(5), 442-461. https://doi.org/10.1002/cben.202100050

Ozdemir, F. and Topuz, A. (2004). Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chemistry, 86(1), 79-83. https://doi.org/10.1016/j.foodchem.2003.08.012

Parimelazhagan, T. (2016). Pharmacological Assays of Plant-Based Natural Products (vol. 71). Springer International Publishing. https://doi.org/10.1007/978-3-319-26811-8

Rakotondraibe, L. H.; Graupner, P. R.; Xiong, Q.; Olson, M.; Wiley, J. D.; Krai, P.; Brodie, P. J.; Callmander, M. W.; Rakotobe, E.; Ratovoson, F.; Rasamison, V. E.; Cassera, M. B.; Hahn, D. R.; Kingston, D. G. I. and Fotso, S. (2015). Neolignans and other metabolites from Ocotea cymosa from the Madagascar rain forest and their biological activities. Journal of Natural Products, 78(3), 431-440. https://doi.org/10.1021/np5008153

Rodriguez, C. R. (2006). Árboles útiles del Ande Peruano: una guía de identificación, ecología y propagación de las especies de la Sierra y los Bosques Montanos en el Perú. Tarea Gráfica Educativa.

Salimon, J.; Omar, T. A. and Salih, N. (2017). An accurate and reliable method for identification and quantification of fatty acids and trans fatty acids in food fats samples using gas chromatography. Arabian Journal of Chemistry, 10(supplement 2), S1875–S1882. https://doi.org/10.1016/j.arabjc.2013.07.016

Salleh, W. M. N. H. W. and Ahmad, F. (2017). Phytochemistry and biological activities of the genus Ocotea (Lauraceae): A review on recent research results (2000-2016). Journal of Applied Pharmaceutical Science, 7(5), 204-218. https://doi.org/10.7324/JAPS.2017.70534

Sandhya, S.; Talukdar, J. and Bhaishya, D. (2016). Chemical and biological properties of lauric acid: A review. International Journal of Advanced Research (IJAR), 4(7), 1123-1128. https://doi.org/10.21474/IJAR01

Schmid, R. (2005). Review of Flowering Plants of the Neotropics, by Smith, N., Mori, S. A., Henderson, A., Stevenson, D. W. and Heald, S. V. Taxon, 54(1), 260. https://doi.org/10.2307/25065340

Subroto, E. and Indiarto, R. (2020). Bioactive monolaurin as an antimicrobial and its potential to improve the immune system and against COVID-19: A review. Food Research, 4(6), 2355-2365. https://doi.org/10.26656/fr.2017.4(6).324

Taha, F. S.; Helmy, H. E. and El-Nockrashy, A. S. (1988). Changes in cottonseed oil when used for frying vegetable products containing chlorophyll. Journal of the American Oil Chemists’ Society, 65(2), 267-271. https://doi.org/10.1007/BF02636414

Van der Werff, H. (2002). A synopsis of Ocotea (Lauraceae) in Central America and Southern Mexico. Annals of the Missouri Botanical Garden, 89(3), 429-451. https://doi.org/10.2307/3298602

Van der Werff, H. and Richter, H. G. (1996). Toward an improved classification of Lauraceae. Annals of the Missouri Botanical Garden, 83(3), 409-418. https://doi.org/10.2307/2399870

Walters, D. R.; Walker, R. L. and Walker, K. C. (2003). Lauric acid exhibits antifungal activity against plant pathogenic fungi. Journal of Phytopathology, 151(4), 228-230. https://doi.org/10.1046/j.1439-0434.2003.00713.x

Wang, J. P.; Meng, S. J. and Li, J. M. (1985). Studies on the distribution of fatty acids in the oils of the family Lauraceae. Journal of Integrative Plant Biology, 27(2), 177-185. https://www.jipb.net/EN/Y1985/V27/I2/

WebMed. (2023). Vitamins & Supplements: Lauric acid - Uses, side effects, and more. In: https://www.webmd.com/vitamins/ai/ingredientmono-1138/lauric-acid (acces May 11, 2023).

Zhou, B.-N.; Johnson, R. K.; Mattern, M. R.; Wang, X.; Hecht, S. M.; Beck, H. T.; Ortiz, A. and Kingston, D. G. I. (2000). Isolation and biochemical characterization of a new topoisomerase I inhibitor from Ocotea leucoxylon. Journal of Natural Products, 63(2), 217-221. https://doi.org/10.1021/np990442s

How to Cite

APA

Gil Archila, E., Delgado Ávila, W. A., Sequeda-Castañeda, L. G. and Cuca Suárez, L. E. (2023). Fatty acid composition in Ocotea caudata (Nees) Mez (Lauraceae) fruits from Colombia . Acta Agronómica, 71(4), 342–348. https://doi.org/10.15446/acag.v71n4.105631

ACM

[1]
Gil Archila, E., Delgado Ávila, W.A., Sequeda-Castañeda, L.G. and Cuca Suárez, L.E. 2023. Fatty acid composition in Ocotea caudata (Nees) Mez (Lauraceae) fruits from Colombia . Acta Agronómica. 71, 4 (Jul. 2023), 342–348. DOI:https://doi.org/10.15446/acag.v71n4.105631.

ACS

(1)
Gil Archila, E.; Delgado Ávila, W. A.; Sequeda-Castañeda, L. G.; Cuca Suárez, L. E. Fatty acid composition in Ocotea caudata (Nees) Mez (Lauraceae) fruits from Colombia . Acta Agron. 2023, 71, 342-348.

ABNT

GIL ARCHILA, E.; DELGADO ÁVILA, W. A.; SEQUEDA-CASTAÑEDA, L. G.; CUCA SUÁREZ, L. E. Fatty acid composition in Ocotea caudata (Nees) Mez (Lauraceae) fruits from Colombia . Acta Agronómica, [S. l.], v. 71, n. 4, p. 342–348, 2023. DOI: 10.15446/acag.v71n4.105631. Disponível em: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/105631. Acesso em: 19 jan. 2025.

Chicago

Gil Archila, Elizabeth, Wilman Antonio Delgado Ávila, Luis Gonzalo Sequeda-Castañeda, and Luis Enrique Cuca Suárez. 2023. “Fatty acid composition in Ocotea caudata (Nees) Mez (Lauraceae) fruits from Colombia ”. Acta Agronómica 71 (4):342-48. https://doi.org/10.15446/acag.v71n4.105631.

Harvard

Gil Archila, E., Delgado Ávila, W. A., Sequeda-Castañeda, L. G. and Cuca Suárez, L. E. (2023) “Fatty acid composition in Ocotea caudata (Nees) Mez (Lauraceae) fruits from Colombia ”, Acta Agronómica, 71(4), pp. 342–348. doi: 10.15446/acag.v71n4.105631.

IEEE

[1]
E. Gil Archila, W. A. Delgado Ávila, L. G. Sequeda-Castañeda, and L. E. Cuca Suárez, “Fatty acid composition in Ocotea caudata (Nees) Mez (Lauraceae) fruits from Colombia ”, Acta Agron., vol. 71, no. 4, pp. 342–348, Jul. 2023.

MLA

Gil Archila, E., W. A. Delgado Ávila, L. G. Sequeda-Castañeda, and L. E. Cuca Suárez. “Fatty acid composition in Ocotea caudata (Nees) Mez (Lauraceae) fruits from Colombia ”. Acta Agronómica, vol. 71, no. 4, July 2023, pp. 342-8, doi:10.15446/acag.v71n4.105631.

Turabian

Gil Archila, Elizabeth, Wilman Antonio Delgado Ávila, Luis Gonzalo Sequeda-Castañeda, and Luis Enrique Cuca Suárez. “Fatty acid composition in Ocotea caudata (Nees) Mez (Lauraceae) fruits from Colombia ”. Acta Agronómica 71, no. 4 (July 31, 2023): 342–348. Accessed January 19, 2025. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/105631.

Vancouver

1.
Gil Archila E, Delgado Ávila WA, Sequeda-Castañeda LG, Cuca Suárez LE. Fatty acid composition in Ocotea caudata (Nees) Mez (Lauraceae) fruits from Colombia . Acta Agron. [Internet]. 2023 Jul. 31 [cited 2025 Jan. 19];71(4):342-8. Available from: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/105631

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

512

Downloads

Download data is not yet available.