Published

2023-10-30

Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja)

Water deficit mitigation by calcium application in yellow diploid potato (Solanum tuberosum L. group Phureja)

DOI:

https://doi.org/10.15446/acag.v72n1.93478

Keywords:

contenido relativo de agua, estabilidad de la membrana, potencial hídrico foliar, rendimiento en tubérculo, tuberización (es)
relative water content, membrane stability, leaf water potential, tuber yield, tuberization (en)

Authors

La variabilidad climática favorece la ocurrencia de sequías que disminuyen el rendimiento en cultivos de papa, por lo cual es necesario desarrollar estrategias para mitigar los efectos del déficit hídrico. El objetivo de esta investigación fue evaluar el efecto de la aplicación de calcio (Ca) en parámetros fisiológicos y rendimiento de Solanum tuberosum L. grupo Phureja cultivar criolla Colombia bajo déficit hídrico. Tubérculos-semilla fueron sembrados en bolsas y mantenidos a capacidad de campo hasta el inicio de tuberización. Entre los 44 y 54 días después de siembra (dds), se realizaron aplicaciones edáficas (E) de: CaCl2 de 3 y 4.5 g planta-1; Ca(NO3)2 de 4.5 y 7.0 g planta-1 y Ca(NO3)2 + B de 6.0 y 9.0 g planta-1. También se realizó aplicación foliar de: CaCl2 de 10 y 20 mM planta-1; y Ca(NO3)2 de 10 y 20 mM planta-1. A los 55 dds las plantas fueron sometidas a riego continuo (BR) y déficit hídrico por suspensión de riego durante 7 días (DH). El DH redujo el contenido relativo de agua en un 22.1 %, el potencial hídrico foliar y el rendimiento en un 26.7 %, y aumentó la pérdida de electrolitos (97.3 %). Las plantas con CaCl2–20-F, CaCl2–4.5-E y Ca(NO3)2–7-E, presentaron menor pérdida de electrolitos (<21.2 %), mayor contenido relativo de agua (>12.6 %) y rendimiento (>15.6 %), respecto a las plantas sin Ca. Esto indica una mitigación del estrés hídrico a nivel de la estabilidad de la membrana y el estado hídrico en aplicaciones edáficas y foliares de Ca, lo cual probablemente se relacione con sus funciones como molécula señalizadora.

Climate variability causes an increase in drought occurrence, which reduces tuber yield in potato. Therefore, it is necessary to develop strategies for mitigating the water deficit. The objective of this research was to assess the effect of calcium (Ca) applications on physiological parameters and yield of Solanum tuberosum L. group Phureja cultivar Criolla Colombia under water deficit. Seed tubers were planted in bags with soil irrigated at field capacity until tuber initiation. Between 44 and 54 days after sowing (das), Ca was applied in edaphic sources (E): 3 and 4.5 g plant-1 CaCl2, 4.5 and 7 g plant-1 Ca(NO3)2, 6 and 9 g plant-1 Ca(NO3)2 + B, and foliar (F): 10 and 20 mM plant-1 CaCl2, and 10 and 20 mM plant-1 Ca(NO3)2. At 55 das, the plants were subjected to two water regimes: well-watered (WW) and water deficit (WD) by irrigation suspension for 7 days. WD reduced the relative water content (22.1 %), leaf water potential and tuber yield (26.7%), while the electrolyte leakage increased (97.3 %). Plants with CaCl2–20-F, CaCl2–4.5-E and Ca(NO3)2–7-E presented lower leakage increase (<21.2 %), and higher relative water content (>12.6 %) and tuber yield (>15.6 %), compared to plants without Ca. This indicates a water mitigation deficit at the level of membrane stability and a water status with edaphic and foliar Ca applications, which is probably related to its functions as signaling molecule.

References

Abdel-Rahman, M.; El-Sayed, M. D. y Rady, M. M. (2018). Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae, 228, 132-144. https://doi.org/10.1016/j.scienta.2017.10.008 DOI: https://doi.org/10.1016/j.scienta.2017.10.008

Amede, T. y Schubert, S. (2003). Mechanisms of drought resistance in grain legumes I: osmotic adjustment. Ethiopian Journal of Science and Technology, 26(1), 37-46. https://doi.org/10.4314/sinet.v26i1.18198 DOI: https://doi.org/10.4314/sinet.v26i1.18198

Anjum, S. A.; Xie, X. Y.; Wang, L. C.; Saleem, M. F.; Man, C. y Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032. https://academicjournals.org/journal/AJAR/article-abstract/F3C5FB537698

Ariza, W.; Rodríguez, L.; Moreno-Echeverry, D.; Guerrero, C. y Moreno, L. (2020). Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. group Phureja). Agronomía Colombiana, 38(1), 48. https://doi.org/10.15446/agron.colomb.v38n1.78982 DOI: https://doi.org/10.15446/agron.colomb.v38n1.78982

Ashraf, M.; Akram, N.; Al-Qurainy, F. y Foolad, M. (2011). Drought tolerance: Roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy, 111, 249-296. https://doi.org/10.1016/B978-0-12-387689-8.00002-3 DOI: https://doi.org/10.1016/B978-0-12-387689-8.00002-3

Atif, R.; Shahid, L.; Waqas, M.; Ali, B.; Rehman, M.; Azeem, F.; Nawaz, M.; Wani, S. y Chung, G. (2019). Insights on calcium-dependent protein kinases (CPKs) signaling for abiotic stress tolerance in plants. International Journal of Molecular Sciences, 20, 5298. https://doi.org/10.3390/ijms20215298 DOI: https://doi.org/10.3390/ijms20215298

Basu, P.; Sharma, A.; Sukumaran, N. (1998). Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica, 35, 13-19. https://doi.org/10.1023/A:1006801311105 DOI: https://doi.org/10.1023/A:1006801311105

Evans, N.; McAinsh, M.; Hetherington, A. y Knight, M. (2005). ROS perception in Arabidopsis thaliana: the ozone induced calcium response. Plant Journal, 41, 615-626. https://doi.org/10.1111/j.1365-313X.2004.02325.x DOI: https://doi.org/10.1111/j.1365-313X.2004.02325.x

Goyer, A. (2017). Maximizing the nutritional potential of potato: The case of folate. Potato Research, 60(3-4), 319-325. https://doi.org/10.1007/s11540-018-9374-3 DOI: https://doi.org/10.1007/s11540-018-9374-3

Guimarães, F. A. V.; de Lacerda, C. F.; Marques, E. C.; Alcantâra de Miranda, M. R.; Braga de Abreu, C. E.; Tarquinio Prisco, J. y Gomes-Filho, E. (2011). Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. Plant Growth Regulation, 65(1), 55-63. https://doi.org/10.1007/s10725-011-9574-1 DOI: https://doi.org/10.1007/s10725-011-9574-1

Gupta, A.; Rico-Medina, A. y Caño-Delgado, A. (2020). The physiology of plant responses to drought. Science, 368, 266-269. https://doi.org/10.1126/science.aaz7614 DOI: https://doi.org/10.1126/science.aaz7614

Harb, A.; Krishnan, A.; Ambavaram, M. y Pereira, A. (2010). Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology, 154, 1254-1271. https://doi.org/10.1104/pp.110.161752 DOI: https://doi.org/10.1104/pp.110.161752

Hochmal, A.; Schulze, S.; Trompelt, K. y Hippler, M. (2015). Calcium-dependent regulation of photosynthesis. Biochimica et Biophysica Acta, 1847, 993-1003. http://dx.doi.org/10.1016/j.bbabio.2015.02.010 DOI: https://doi.org/10.1016/j.bbabio.2015.02.010

Hossain, M.; Piyatida, P.; Teixeira da Silva, J. y Fujita, M. (2012). Molecular mechanism of heavymetal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012, 1-37. https://doi.org/10.1155/2012/872875 DOI: https://doi.org/10.1155/2012/872875

Hosseini, S.; Réthoré, E.; Pluchon, S.; Ali, N.; Billiot, B. y Yvin, J. (2019). Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. International Journal of Molecular Sciences, 20, 3777. https://doi.org/10.3390/ijms20153777 DOI: https://doi.org/10.3390/ijms20153777

Hsiao, T. (1973). Plant responses to water stress. Annual Review of Plant Physiology, 24, 519-570. https://doi.org/10.1146/annurev.pp.24.060173.002511 DOI: https://doi.org/10.1146/annurev.pp.24.060173.002511

Jefferies, R. A. (1995). Physiology of crop response to drought. En Modelling of Crops Under Conditions Limiting (pp. 61-74). https://doi.org/10.1007/978-94-011-0051-9_4 DOI: https://doi.org/10.1007/978-94-011-0051-9_4

Kaur, H.; Kaur, S.; Khanna, K. y Bhardwaj, R. (2021). Scrutinizing the impact of water deficit in plants: Transcriptional regulation, signaling, photosynthetic efficacy, and management. Physiologia Plantarum, 172, 935-962. https://doi.org/10.1111/ppl.13389 DOI: https://doi.org/10.1111/ppl.13389

Knight, H.; Trewavas, A. y Knight, M. (2003). Calcium signaling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal, 12, 911-922. https://doi.org/10.1046/j.1365-313X.1997.12051067.x DOI: https://doi.org/10.1046/j.1365-313X.1997.12051067.x

Lawlor, D. y Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, 25(2), 275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x DOI: https://doi.org/10.1046/j.0016-8025.2001.00814.x

Liu, F.; Jensen, C. R.; Shahanzari, A.; Andersen, M. N. y Jacobsen, S. E. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science, 168, 831-836. https://doi.org/10.1016/j.plantsci.2004.10.016 DOI: https://doi.org/10.1016/j.plantsci.2004.10.016

Miranda-Apodaca, J.; Pérez-López, U.; Lacuesta, M.; Mena-Peite, A. y Muñoz-Rueda, A. (2018). The interaction between drought and elevated CO2 in water relations in two grassland species is species-specific. Journal of Plant Physiology, 220, 193-202. https://doi.org/10.1016/j.jplph.2017.11.006 DOI: https://doi.org/10.1016/j.jplph.2017.11.006

Naeem, M.; Naeem, M. S.; Ahmad, R.; Ihsan, M. Z.; Yasin, M.; Hussain, Y. y Fahd, S. (2018). Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Archives of Agronomy and Soil Science, 64(1), 116-131. https://doi.org/10.1080/03650340.2017.1327713 DOI: https://doi.org/10.1080/03650340.2017.1327713

Pieczynski, M.; Marczewski, W.; Hennig, J.; Dolata, J.; Bielewicz, D.; Piontek, P. et al. (2013). Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal, 11, 459-469. https://doi.org/10.1111/pbi.12032 DOI: https://doi.org/10.1111/pbi.12032

Ramírez, A.; Yactayo, W.; Rens, R.; Rolando, L.; Palacios, S.; de Mendiburu, F.; Mares, V.; Barreda, C.; Loayza, H.; Monneveux, P.; Zotarelli, L.; Khan, A. y Quiroz, E. (2016). Defining biological thresholds associated to plant water status for monitoring water restriction effects: Stomatal conductance and photosynthesis recovery as key indicators in potato. Agricultural Water Management, 177, 369-378. doi: http://dx.doi.org/10.1016/j.agwat.2016.08.028 DOI: https://doi.org/10.1016/j.agwat.2016.08.028

Savić, J.; Dragićević, I.; Pantelić, D.; Ojlača, J. y Momcilovic, I. (2012). Expression of small heat shock proteins and heat tolerance in potato (Solanum tuberosum L.). Archives of Biological Sciences, 64(1), 135-144. https://doi.org/10.2298/ABS1201135S DOI: https://doi.org/10.2298/ABS1201135S

Schapire, A. L.; Valpuesta, V. y Botella, M. A. (2009). Plasma membrane repair in plants. Trends in Plant Science, 14(1), 654-652. https://doi.org/10.1016/j.tplants.2009.09.004 DOI: https://doi.org/10.1016/j.tplants.2009.09.004

Soltys-Kalina, D.; Plich, J.; Strzelczyk-Żyta, D.; Śliwka, J. y Marczewski, W. (2016). The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’- derived potato cultivars. Breeding Science, 66, 328-331. https://doi.org/10.1270/jsbbs.66.328 DOI: https://doi.org/10.1270/jsbbs.66.328

Szalonek, M.; Sierpien, B.; Rymaszewski, W.; Gieczewska, K.; Garstka, M.; Lichocka, M.; Sass, L. et al. (2015). Potato annexin STANN1 promotes drought tolerance and mitigates light stress in transgenic Solanum tuberosum L. plants. Plos One, 10(7), 1-38. https://doi.org/10.1371/journal.pone.0132683 DOI: https://doi.org/10.1371/journal.pone.0132683

Tardieu, F.; Simonneau, T. y Muller, B. (2018). The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach. Annual Review of Plant Biology, 69, 733-759. https://doi.org/10.1146/annurev-arplant-042817-040218 DOI: https://doi.org/10.1146/annurev-arplant-042817-040218

Tigkas, D.; Vangelis, H. y Tsakiris, G. (2020). Implementing crop evapotranspiration in RDI for farm-level drought evaluation and adaptation under climate change conditions. Water Resources Management, 34, 4329-4343. https://doi.org/10.1007/s11269-020-02593-6 DOI: https://doi.org/10.1007/s11269-020-02593-6

Tourneux, C.; Devaux, A.; Camacho, R.; Mamani, P. y Ledent, J.-F. (2003). Effect of water shortage on six potato genotypes in the highlands of Bolivia (II): Water relations, physiological parameters. Agronomie, 23(2), 181-190. https://doi.org/10.1051/agro:2002080 DOI: https://doi.org/10.1051/agro:2002080

Wijewardana, C.; Raja, K. R.; Alsajri, F. A.; Irby, T. T.; Krutz, J. y Golden, B. (2018). Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns. Irrigation Science, 36, 241-255. https://doi.org/10.1007/s00271-018-0580-1 DOI: https://doi.org/10.1007/s00271-018-0580-1

Wishart, J.; George, T.; Brown, L.; White, P.; Ramsay, G.; Jones, H. y Gregory, P. (2014). Field phenotyping of potato to assess root and shoot characteristics associated with drought tolerance. Plant and Soil, 378, 351-363. https://doi.org/10.1007/s11104-014-2029-5 DOI: https://doi.org/10.1007/s11104-014-2029-5

Xu, C.; Li, X. y Zhang, L. (2013). The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions. Plos One, 8(7), e68214. https://doi.org/10.1371/journal.pone.0068214 DOI: https://doi.org/10.1371/journal.pone.0068214

How to Cite

APA

Cárdenas Pira, W. T., Moreno Fonseca, L. P. and Rodríguez, L. E. (2023). Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja) . Acta Agronómica, 72(1), 47–54. https://doi.org/10.15446/acag.v72n1.93478

ACM

[1]
Cárdenas Pira, W.T., Moreno Fonseca, L.P. and Rodríguez, L.E. 2023. Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja) . Acta Agronómica. 72, 1 (Oct. 2023), 47–54. DOI:https://doi.org/10.15446/acag.v72n1.93478.

ACS

(1)
Cárdenas Pira, W. T.; Moreno Fonseca, L. P.; Rodríguez, L. E. Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja) . Acta Agron. 2023, 72, 47-54.

ABNT

CÁRDENAS PIRA, W. T.; MORENO FONSECA, L. P.; RODRÍGUEZ, L. E. Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja) . Acta Agronómica, [S. l.], v. 72, n. 1, p. 47–54, 2023. DOI: 10.15446/acag.v72n1.93478. Disponível em: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/93478. Acesso em: 15 mar. 2025.

Chicago

Cárdenas Pira, Wendy Tatiana, Liz Patricia Moreno Fonseca, and Luis Ernesto Rodríguez. 2023. “Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja) ”. Acta Agronómica 72 (1):47-54. https://doi.org/10.15446/acag.v72n1.93478.

Harvard

Cárdenas Pira, W. T., Moreno Fonseca, L. P. and Rodríguez, L. E. (2023) “Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja) ”, Acta Agronómica, 72(1), pp. 47–54. doi: 10.15446/acag.v72n1.93478.

IEEE

[1]
W. T. Cárdenas Pira, L. P. Moreno Fonseca, and L. E. Rodríguez, “Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja) ”, Acta Agron., vol. 72, no. 1, pp. 47–54, Oct. 2023.

MLA

Cárdenas Pira, W. T., L. P. Moreno Fonseca, and L. E. Rodríguez. “Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja) ”. Acta Agronómica, vol. 72, no. 1, Oct. 2023, pp. 47-54, doi:10.15446/acag.v72n1.93478.

Turabian

Cárdenas Pira, Wendy Tatiana, Liz Patricia Moreno Fonseca, and Luis Ernesto Rodríguez. “Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja) ”. Acta Agronómica 72, no. 1 (October 30, 2023): 47–54. Accessed March 15, 2025. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/93478.

Vancouver

1.
Cárdenas Pira WT, Moreno Fonseca LP, Rodríguez LE. Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja) . Acta Agron. [Internet]. 2023 Oct. 30 [cited 2025 Mar. 15];72(1):47-54. Available from: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/93478

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

263

Downloads