Comparación de las características poblacionales de Lemna minuta (ARACEAE: LEMNOIDEAE) en tres medios de cultivo
Comparison of the populational characteristics of Lemna minuta (ARACEAE: LEMNOIDEAE) in three culture media
DOI:
https://doi.org/10.15446/rev.colomb.biote.v20n1.50511Palabras clave:
medios de cultivo, tasa de crecimiento, bioensayo, Lemna minuta, Lemnoideae (es)culture media, growth rate, propagation, duckweed, Lemna minuta (en)
Las investigaciones en macrófitas acuáticas neotropicales son escasas, principalmente en Colombia comparadas con países como Brasil, aunque se consideran comunidades apropiadas en diversas aplicaciones por su gran capacidad reproductiva y alta sensibilidad a condiciones cambiantes del ambiente. Se propuso aclimatar y cultivar un clon de Lemna minuta, lenteja de agua flotante de amplia distribución en Colombia y América. Sus frondas hijas se mantuvieron dos meses en el medio de cultivo APHA y posteriormente se comparó su propagación en tres medios de cultivo: Hoagland’s E+, APHA y AAP20x. Se analizaron variables de crecimiento poblacional como tasa de crecimiento, mortalidad, tiempo de duplicación y tiempo de vida. Adicionalmente, se evaluó la eficiencia del método de limpieza de frondas propuesto por Acreman para obtener cultivos axénicos. Los resultados indicaron que el medio Hoagland’s E+ (sin compuestos orgánicos) es el más adecuado para el crecimiento de las frondas en condiciones de laboratorio, debido a su mayor tasa de producción de frondas (0,16 frondas·d-1) y tiempo de vida (13,8 días), con menor mortalidad (0,11 frondas·d-1) y tiempo de duplicación (4,61 días). Conocer los parámetros de crecimiento poblacional y las condiciones de cultivo de L. minuta permiten proponerla como una macrófita relevante y candidata para diversos bioensayos de calidad de agua.
Although neotropical macrophytes are considered appropriate for diverse applications due to their great reproductive capacity and high sensitivity to changing environmental conditions, research on these plants is currently scarce, especially in Colombia when compared to countries such as Brazil. The current research work intended to acclimatize and cultivate a clone of the duckweed Lemna minuta, which is widely distributed in Colombia and America. After keeping daughter fronds of this species for two months in APHA culture medium, their propagation was compared in three culture media: Hoagland's E+, APHA and AAP20x. Population growth variables such as growth rate, mortality, doubling time and life span. Additionally, the efficiency of the frond cleaning method proposed by Acreman to obtain axenic cultures was evaluated. The results indicated that Hoagland's E+ medium (without organic compounds) is the most suitable one when it comes to frond growing under laboratory conditions, due to its associated higher frond production rate (0.16 fronds•d-1) and life span (13.8 d), as well as lower mortality (0.11 fronds•d-1) and doubling time (4.61 d). Knowing the population growth and cultivation conditions of L. minuta allows proposing it as a relevant macrophyte and candidate for various water quality bioassays.
Referencias
Acreman J. 2007 Axenic culture techniques for Lemna. En: Environment Canada (EC). Biological test method: test for measuring the inhibition of growth using the freshwater macrophyte Lemna minor. EPS1/RM/37. 2nd ed. Ottawa: Environmental Protection Publications. p. 102-108.
Armstrong W. 2001. Wayne’s Word Lemnaceae. [consultado 5 de febrero de 2011]. Disponible en: http://waynesword.palomar.edu/1wayindx.htm.
Arroyave M. 2004. La lenteja de agua (Lemna minor L.): una planta acuática promisoria. Rev EIA. 1: 33-38.
Bellinger E., Sigee D. 2010. Freshwater algae: identification and use as bioindicators. London: Wiley-Blackwell. p. 137-240. DOI: 10.1002/9780470689554
Bergman B., Cheng J., Classen J., Stomp A. 2000. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresour Technol. 73: 13-20. DOI: 10.1016/S0960-8524(99)00137-6
Böttcher T., Schroll R. 2007. The fate of isoproturon in a freshwater microcosm with Lemna minor as a model organism. Chemos. 66: 684-689. DOI: 10.1016/j.chemosphere.2006.07.087
Cederdreen N., Abbaspoor M., Sorensen H., Streibig J. 2007. Is mixture toxicity measured on a biomarker indicative of what happens on a population level? A study with Lemna minor. Ecotoxicol Environ Saf. 67: 323-332. DOI: 10.1016/j.ecoenv.2006.12.006
Chojnacka K. 2006. The application of multielemental analysis in the elaboration of technology of mineral feed additives based on Lemna minor biomass. Talanta. 70: 966-972. DOI: 10.1016/j.talanta.2006.05.063
Christen O., Theuer C. 1996. Sensitivity of Lemna bioassay interacts with stock-culture period. J Chem Ecol. 22(6): 1177-1186. DOI: 10.1007/BF02027953
Cross J. 2002. The charms of duckweed. [consultado 5 de febrero de 2011]. Disponible en: http://www.mobot.org/jwcross/duckweed/duckweed-charms.htm.
Dalu J., Ndamba J. 2003. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe). Phys Chem Earth. 28:1147-1160. DOI: 10.1016/j.pce.2003.08.036
Díaz-Báez M., Bustos M., Espinosa A. 2004. Pruebas de toxicidad acuática: fundamentos y métodos. Bogotá: Universidad Nacional de Colombia. 116 p.
Drost W., Matzke M., Backhaus T. 2007. Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Chemos. 67: 36-43.
Einhellig F., Leather G., Hobbs L. 1985. Use of Lemna minor as a bioassay in allelopathy. J Chem Ecol. 11(1): 65-72. DOI: 10.1007/BF00987606
Environment Canada (EC). 2007. Biological test method: test for measuring the inhibition of growth using the freshwater macrophyte Lemna minor. EPS1/RM/37. 2nd ed. Ottawa: Environmental Protection Publications. 141 p.
Hillman W. 1961. The Lemnaceae or Duckweeds: A review of the descriptive and experimental literature. Bot Rev. 27(2): 221-287. DOI: 10.1007/BF02860083
Jenner H., Janssen-Mommen J. 1993. Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments. Arch Environ Contam Toxicol. 25: 3-11. DOI: 10.1007/BF00230704
Kufel L., Strzalek M., Konieczna A., Izdebska K. 2010. The effect of Stratiotes aloides L. and nutrients on the growth rate of Lemna minor L. Aquat Bot. 92: 168-172. DOI: 10.1016/j.aquabot.2009.11.005
Landolt E. 1986. The family of Lemnaceae: a monographic study. vol. 1. Zürich: Geobotanisches Institut der ETH. 71: 1-566.
Landolt E. 1998. Lemnaceae. In: Kubitzki K, editor. The families and genera of vascular plants vol. IV. Berlín, Germany: Springer-Verlag. p. 264-270.
Landolt E., Kandeler R. 1987. The family of Lemnaceae: a monographic study. vol. 2. Zürich: Geobotanisches Institut der ETH. 95: 1-638.
Landolt E., Schmidt-Mumm U. 2009. Lemnaceae. Flora de Colombia No 24: Instituto de Ciencias Naturales, Universidad Nacional de Colombia; Bogotá D.C. 54 p.
Lemon G., Posluszny U. 2000. Comparative shoot development and evolution in the Lemnaceae. Int J Plant Sci. 161(5): 733-748. DOI: 10.1086/314298
Lemon G., Posluszny U., Husband B. 2001. Potencial and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor, and Wolffia borealis. Aqua Bot. 70: 79-87. DOI: 10.1016/S0304-3770(00)00131-5
Mohan B., Hosetti B. 1999. Aquatic plants for toxicity assessment. Environ Res. section A 81: 259-274. DOI: 10.1006/enrs.1999.3960
Moody M., Miller J. 2005. Lemma minor growth inhibition test. En: Blaise C., Férard J-F, editors. Small-scale freshwater toxicity investigations, toxicity test methods. vol. 1. Netherlands: Springer. p. 271-298. DOI: 10.1007/1-4020-3120-3
Moser H., Pattard M. 2009. Lemna growth inhibition test. En: Moser H., Römbke J., editors. Ecotoxicological Characterization of Waste. Germany: Springer. p. 137-144. DOI: 10.1007/978-0-387-88959-7
Organization for Economic Cooperation and Development (OECD). 2006. Guidelines for the testing of chemicals: Lemna sp. Growth Inhibition Test. 22 p. DOI: 10.1787/9789264016194-en.
R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponible en: http://www.R-project.org/.
Radic S., Stipanicev D., Cvjetko P., Marijanovic M., Sirac S., Pevalek-Kozlina B., et al. 2011. Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicol Environ Saf. 74(2): 182-187. DOI: 10.1016/j.ecoenv.2010.06.011.
Roijackers R., Szabó S., Scheffer M. 2004. Experimental analysis of the competition between algae and duckweed. Arch Hydrobiol. 160(3): 401-412. DOI: 10.1127/0003-9136/2004/0160-0401
Santamaría L. 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Act Oecol. 23: 137-154. DOI: 10.1016/S1146-609X(02)01146-3
Schmidt-Mumm U. 1998. Vegetación acuática y palustre de la sabana de Bogotá. Tesis de maestría. Bogotá: Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia. 181 p.
Stevens P. 2008. Angiosperm Phylogeny Website – APG II. Version 9
[consultado 5 de febrero de 2011]. Disponible en: http://www.mobot.org/MOBOT/research/Apweb/.
Szabó S., Braun M., Balázsy S., Reisinger O. 1998. Influences of nine algal species isolated from duckweed-covered sewage miniponds on Lemna gibba. Aqua Bot. 60: 189-195.
Szabó S., Roijackers R., Scheffer M. 2003. A simple method for analyzing the effects of algae on the growth of Lemna and preventing algal growth in duckweed bioassays. Arch Hydrobiol. 157(4): 567-575. DOI: 10.1127/0003-9136/2003/0157-0567
Szabó S., Roijackers R., Scheffer M. 2005. The strength of limiting factors for duckweed during algal competition. Arch Hydrobiol. 164: 127-140. DOI: 10.1127/0003-9136/2005/0164-0127
Wang W. 1991. Literature review on higher plants for toxicity testing. Water Air Soil Pollut. 59: 381-400. DOI: 10.1007/BF00211845
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Liliana Morales-Barrera, César Mateo Flores-Ortiz, Eliseo Cristiani-Urbina. (2020). Single and Binary Equilibrium Studies for Ni2+ and Zn2+ Biosorption onto Lemna gibba from Aqueous Solutions. Processes, 8(9), p.1089. https://doi.org/10.3390/pr8091089.
2. Daniel Ferley Ramírez-Babativa. (2019). Adaptación del método Acreman para la limpieza de plantas en Lemna minuta (Araceae: Lemnoideae). Revista Colombiana de Biotecnología, 21(1), p.128. https://doi.org/10.15446/rev.colomb.biote.v21n1.53219.
3. M. R. Quevedo, P. S. González, C. N. Barroso, C. E. Paisio. (2024). Microbe-assisted phytoremediation of domestic and tannery wastewater: in vitro application of a macrophyte mixture for contaminant removal. International Journal of Environmental Science and Technology, https://doi.org/10.1007/s13762-024-06151-0.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2018 Revista Colombiana de Biotecnología
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).