Publicado
On embedding theorems for weighted spaces of holomorphic functions in tubular domains
Sobre teoremas de inmersiones para espacios ponderados de funciones holomorfas en dominios tubulares
Palabras clave:
analytic functions, tubular domains over symmetric cones, Bergman type spaces (en)funciones analíticas, dominios tubulares sobre conos simétricos, espacios de tipos de Bergman (es)
Descargas
Referencias
D. Bekolle, A. Bonami, G. Garrigos, C. Nana, M. Peloso, and F. Ricci, Lecture notes on Bergman projectors in tube domain over cones, an analytic and geometric viewpoint, Proceeding of the International Workshop on Classical Analysis, Yaounde, 2001, 75 pages.
O. V. Besov, V. P. Il'in, and S. M. Nicol'skij, Integral'nye predstavleniya
funktsij i teoremy vlozheniya, Moskva, Nauka, Fizmatlit, 2nd ed., rev. and compl. Edition, 1996.
J. Faraut and A. Koranyi, Analysis on symmetric cones, Clarendon Press,
Oxford, 1994.
P. Mercer and J. Cima, Composition operators between Bergman spaces
on convex domains in Cn, Journal Operator Theory 33 (1995), no. 2.
B. F. Sehba, Bergman type operators in tube domains over symmetric
cones, Proc. Edinburg. Math. Society 52 (2009), no. 2, 529-544.
B. F. Sehba and C. Nana, Carleson Embeddings and two operators on
Bergman spaces of tube domains over symmetric cones, Integr. Equ. Oper.
Theory 83 (2015), 151-178.
F. A. Shamoyan, Embedding theorems and a characterization of traces in the spaces hp(un); 0 < p < 1, Mathematics of the USSR-Sbornik 35
(1979), no. 5, 709-725.
F. A. Shamoyan, Embedding theorems for weighted anisotropic spaces of holomorphic functions in the polydisk, Journal Math. Anal. Geom. (2003), 116-125.
F. A. Shamoyan and O. V. Yaroslavtseva, Continuous projections, duality, and the diagonal mapping in weighted spaces of holomorphic functions with mixed norm, Journal of Mathematical Sciences 101 (2000), no. 3, 3211-3215.
R. Shamoyan and S. Kurilenko, On new embedding theorems in analytic bergman spaces in bounded pseudoconvex domains, Journal Siberian Fed. Univ. 7 (2014), no. 3, 383-388.
R. Shamoyan and S. Maksakov, Embedding theorems for weighted
anisotropic spaces of holomorphic functions in strongly pseudoconvex domains, Romai Journal 13 (2017), no. 1, 71-92.
R. Shamoyan and E. Povpritz, Multifunctional analytic spaces and new
sharp embedding theorems in strongly pseudoconvex domains, Krag. Math.
Journal (2013), no. 37, 221-244.
K. Zhu, Spaces of holomorphic functions in the unit ball, Springer-Verlag, New York, 2005.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2019 Boletín de Matemáticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.


