Publicado

2018-01-01

A Universal Homogeneous Simple Matroid of Rank 3

Una matroide simple homogénea universal de rango 3

Palabras clave:

homogeneous structures, matroids, incidence structures, automorphism groups (en)
estructuras homogéneas, matroides, estructuras de incidencia, grupos de automorfismos (es)

Descargas

Autores/as

  • Gianluca Paolini The Hebrew University of Jerusalem
We construct a ∧-homogeneous universal simple matroid of rank 3, i.e. a countable simple rank 3 matroid M* which ∧-embeds every finite simple rank 3 matroid, and such that every isomorphism between finite ∧-subgeometries of M* extends to an automorphism of M*. We also construct a ∧-homogeneous matroid M* (P) which is universal for the class of finite simple rank 3 matroids omitting a given finite projective plane P. We then prove that these structures are not ℵ0-categorical, they have the independence property, they admit a stationary independence relation, and that their automorphism group embeds the symmetric group Sym(ω). Finally, we use the free projective extension F(M*) of M* to conclude the existence of a countable projective plane embedding all the finite simple matroids of rank 3 and whose automorphism group contains Sym(ω), in fact we show that Aut(F(M*)) ≅ Aut(M*).
Construimos una matroide ∧-homogénea universal de rango 3, i.e. una matroide M* contable simple de rango 3 en el que que se ∧-sumerge toda matroide finita simple de rango 3, y tal que todo isomorfismo entre ∧-subgeometrías finitas de M* se extienden a un automorfismo de M*. Construimos además una matroide M* (P) ∧-homogénea que es universal para la clase de las matroides finitas simples de rango 3 que omiten un plano proyecto finito P dado. Entonces demostramos que estas estructuras no son ℵ0-categóricas, tienen la propiedad de independencia y admiten una relación de independencia estacionaria, y que su grupo de automorfismos sumerge el grupo de simetrías Sym(ω). Finalmente, usamos la extensión productiva libre F(M*) de M* para concluir la existencia de un plano proyecto contable que sumerge todas las matroides finitas simples de rango 3 y cuyo grupo de automorfismos contiene Sym(ω), de hecho demostramos que Aut(F(M*)) ≅ Aut(M*).

Referencias

J. T. Baldwin, Some Projective Planes of Lenz-Barlotti Class I, Proc.

Amer. Math. Soc. 123 (1995), no. 1.

G. Cherlin, Homogeneous Tournaments Revisited, Geom. Dedicata 26

(1988), no. 2, 231-239.

G. Cherlin and A. H. Lachlan, Stable Finitely Homogeneous Structures,

Trans. Amer. Math. Soc. 296 (1986), no. 2, 815-850.

H. H. Crapo and G. Rota, On the Foundations of Combinatorial Theory:

Combinatorial Geometries, M.I.T. Press, Cambridge, Mass, 1970.

A. Devillers and J. Doyen, Homogeneous and Ultrahomogeneous Linear

Spaces, J. Combin. Theory Ser. A 84 (1998), no. 2, 236-241.

M. Droste, M. Giraudet, D. Macpherson, and N. Sauer, Set-Homogeneous

Graphs, J. Combin. Theory Ser. B 62 (1994), no. 1, 63-95.

R. Gray, D. Macpherson, C. E. Praeger, and G. F. Royle, Set-Homogeneous

Directed Graphs, J. Combin. Theory Ser. B 102 (2012), no. 2, 474-520.

M. Hall, Projective Planes, Trans. Amer. Math. Soc. 54 (1943), 229-277.

C. W. Henson, A Family of Countable Homogeneous Graphs, Pacific J.

Math. 38 (1971), no. 1, 69-83.

W. Hodges, Model Theory, Cambridge University Press, 1993.

D. R. Hughes and F. C. Piper, Projective Planes, Graduate Texts in Mathematics, Vol. 6. Springer-Verlag, New York-Berlin, 1973.

T. Hyttinen and G. Paolini, Beyond Abstract Elementary Classes: On The Model Theory of Geometric Lattices, Ann. Pure Appl. Logic 169 (2018),

no. 2, 117-145.

F. Kalhoff, On Projective Embeddings of Partial Planes and Rank-Three

Matroids, Pacific J. Math. 163 (1997), no. 1-3, 67-79.

A. S. Kechris and Ch. Rosendal, Turbulence, Amalgamation, and Generic Automorphisms of Homogeneous Structures, Proc. Lond. Math. Soc. 94 (2007), no. 2, 302-350.

J. P. S. Kung, A Source Book in Matroid Theory, Birkhauser Boston, Inc., Boston, MA, 1986.

A. H. Lachlan, On Countable Stable Structures which are Homogeneous for a Finite Relational Language, Israel J. Math. 49 (1984), no. 1-3, 69-153.

A. H. Lachlan and R. E. Woodrow, Countable Ultrahomogeneous Undirected Graphs, Trans. Amer. Math. Soc. 262 (1980), no. 1, 51-94.

E. Mendelsohn, Every Group is the Collineation Group of some Projective Plane, J. Geometry 2 (1972), 97-106.

I. Müller, Fraïssé Structures with Universal Automorphism Groups, J. Algebra 463 (2016), 134-151.

M.Ziegler and K. Tent, A Course in Model Theory, Lecture Notes in Logic, 40. Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012.

J. G. Oxley, Matroid Theory, Oxford University Press, 1992.

R. Rado, Universal Graphs and Universal Functions, Acta Arith. 9 (1964), no. 4, 331-340.

K. Tent and M. Ziegler, On the Isometry Group of the Urysohn Space, J.

London Math. Soc. 87 (2013), no. 1, 289-303.

Cómo citar

APA

Paolini, G. (2018). A Universal Homogeneous Simple Matroid of Rank 3. Boletín de Matemáticas, 25(1), 39–48. https://revistas.unal.edu.co/index.php/bolma/article/view/79017

ACM

[1]
Paolini, G. 2018. A Universal Homogeneous Simple Matroid of Rank 3. Boletín de Matemáticas. 25, 1 (ene. 2018), 39–48.

ACS

(1)
Paolini, G. A Universal Homogeneous Simple Matroid of Rank 3. Bol. Matemáticas 2018, 25, 39-48.

ABNT

PAOLINI, G. A Universal Homogeneous Simple Matroid of Rank 3. Boletín de Matemáticas, [S. l.], v. 25, n. 1, p. 39–48, 2018. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/79017. Acesso em: 22 ene. 2025.

Chicago

Paolini, Gianluca. 2018. «A Universal Homogeneous Simple Matroid of Rank 3». Boletín De Matemáticas 25 (1):39-48. https://revistas.unal.edu.co/index.php/bolma/article/view/79017.

Harvard

Paolini, G. (2018) «A Universal Homogeneous Simple Matroid of Rank 3», Boletín de Matemáticas, 25(1), pp. 39–48. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/79017 (Accedido: 22 enero 2025).

IEEE

[1]
G. Paolini, «A Universal Homogeneous Simple Matroid of Rank 3», Bol. Matemáticas, vol. 25, n.º 1, pp. 39–48, ene. 2018.

MLA

Paolini, G. «A Universal Homogeneous Simple Matroid of Rank 3». Boletín de Matemáticas, vol. 25, n.º 1, enero de 2018, pp. 39-48, https://revistas.unal.edu.co/index.php/bolma/article/view/79017.

Turabian

Paolini, Gianluca. «A Universal Homogeneous Simple Matroid of Rank 3». Boletín de Matemáticas 25, no. 1 (enero 1, 2018): 39–48. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/bolma/article/view/79017.

Vancouver

1.
Paolini G. A Universal Homogeneous Simple Matroid of Rank 3. Bol. Matemáticas [Internet]. 1 de enero de 2018 [citado 22 de enero de 2025];25(1):39-48. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/79017

Descargar cita

Visitas a la página del resumen del artículo

162

Descargas

Los datos de descargas todavía no están disponibles.