Publicado

2018-01-01

On the equivalence of Gaussian Sobolev norms and some weighted Wiener-Chaos norms

Sobre la equivalencia de normas de Sobolev gaussianas y normas de Wiener-caos con pesos

Palabras clave:

White noise analysis, Wiener-Chaos expansions, finite elements, stochastic partial differential equations, stochastic elliptic equations (en)
Normas de Sobolev gaussianas, Normas de Weiner caos, cálculo de dimensión infinita (es)

Descargas

Autores/as

  • Juan Galvis Universidad Nacional de Colombia
When working with Gaussian measures, in some applications, regularity of functions needs to be evaluated. In order to measure the regularity of a function in a mean square sense, Weiner-Chaos weighted norms and also Gaussian-Sobolev norms have been introduced. Some family of weights used in the Chaos norms generate norms equivalent to the Gaussian Sobolev norms. In this short paper we review this fact and a recent proof of it presented in [5, 6] that sharpened the equivalence to and equality of one of the norms in terms of the other. We note that we review the case of spaces of functions of infinity many variables.
Cuando trabajamos con medidas gausianas, en algunas aplicaciones, se necesita evaluar la regularidad de la solución. Para medir la regularidad de la solución en el sentido medio cuadrático, normas del tiempo de Weiner-caos con peso y normas de Sobolev gaussianas han sido introducidas. Algunas familias de pesos usados en las normas de caos generan normas equivalentes a las normas de Sobolev gaussianas. En este artículo corto revisamos esta equivalencia y una demostración reciente que obtiene igualdad entre estas normas. Notamos que se revisa el caso de espacios de funciones en infinitas variables.

Referencias

Y. M. Berezanskiï, Selfadjoint operators in spaces of functions of infinitely many variables, Translations of Mathematical Monographs, vol. 63, American Mathematical Society, Providence, RI, 1986, Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver. MR MR835705 (87i:47023)

V. I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. MR MR1642391 (2000a:60004)

Ch. A. Charalambides, Enumerative combinatorics, CRC Press Series on

Discrete Mathematics and its Applications, Chapman & Hall/CRC, Boca

Raton, FL, 2002. MR MR1937238 (2003k:05001)

Giuseppe Da Prato, An introduction to infinite-dimensional analysis, Universitext, Springer-Verlag, Berlin, 2006, Revised and extended from the

original by Da Prato. MR MR2244975

J. Galvis and M. Sarkis, Approximating infinity-dimensional stochastic

Darcy's equations without uniform ellipticity, SIAM J. Numer. Anal. 47

(2009), no. 5, 3624-3651. MR MR2576514

J. Galvis and M. Sarkis, Regularity results for the ordinary product stochastic pressure equation, SIAM J. Math. Anal. 44 (2012), no. 4, 2637-2665. MR 3023390

T. Hida, Brownian motion, Applications of Mathematics, vol. 11, Springer-Verlag, New York, 1980, Translated from the Japanese by the author and T. P. Speed. MR MR562914 (81a:60089)

H. Holden, B. Oksendal, J. Uboe, and T. Zhang, Stochastic partial differential equations, Probability and its Applications, Birkhäuser Boston

Inc., Boston, MA, 1996, A modeling, white noise functional approach.

MR MR1408433 (98f:60124)

Hui-H. Kuo, White noise distribution theory, Probability and Stochastics

Series, CRC Press, Boca Raton, FL, 1996. MR MR1387829 (97m:60056)

P. Malliavin, Integration and probability, Graduate Texts in Mathematics, vol. 157, Springer-Verlag, New York, 1995, With the collaboration of Hélène Airault, Leslie Kay and Gérard Letac, Edited and translated from the French by Kay, With a foreword by Mark Pinsky. MR MR1335234 (97f:28001a)

N. Obata, White noise calculus and Fock space, Lecture Notes in

Mathematics, vol. 1577, Springer-Verlag, Berlin, 1994. MR MR1301775

(96e:60061)

I. Shigekawa, Stochastic analysis, Translations of Mathematical Monographs, vol. 224, American Mathematical Society, Providence, RI, 2004, Translated from the 1998 Japanese original by the author, Iwanami Series in Modern Mathematics. MR MR2060917 (2005k:60002)

H. Takeyuki, K. Hui-Hsiung, P. Jürgen, and S. Ludwig, White noise,

Mathematics and its Applications, vol. 253, Kluwer Academic Publishers

Group, Dordrecht, 1993, An infinite-dimensional calculus. MR MR1244577

(95f:60046)

Cómo citar

APA

Galvis, J. (2018). On the equivalence of Gaussian Sobolev norms and some weighted Wiener-Chaos norms. Boletín de Matemáticas, 25(1), 49–63. https://revistas.unal.edu.co/index.php/bolma/article/view/79020

ACM

[1]
Galvis, J. 2018. On the equivalence of Gaussian Sobolev norms and some weighted Wiener-Chaos norms. Boletín de Matemáticas. 25, 1 (ene. 2018), 49–63.

ACS

(1)
Galvis, J. On the equivalence of Gaussian Sobolev norms and some weighted Wiener-Chaos norms. Bol. Matemáticas 2018, 25, 49-63.

ABNT

GALVIS, J. On the equivalence of Gaussian Sobolev norms and some weighted Wiener-Chaos norms. Boletín de Matemáticas, [S. l.], v. 25, n. 1, p. 49–63, 2018. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/79020. Acesso em: 22 ene. 2025.

Chicago

Galvis, Juan. 2018. «On the equivalence of Gaussian Sobolev norms and some weighted Wiener-Chaos norms». Boletín De Matemáticas 25 (1):49-63. https://revistas.unal.edu.co/index.php/bolma/article/view/79020.

Harvard

Galvis, J. (2018) «On the equivalence of Gaussian Sobolev norms and some weighted Wiener-Chaos norms», Boletín de Matemáticas, 25(1), pp. 49–63. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/79020 (Accedido: 22 enero 2025).

IEEE

[1]
J. Galvis, «On the equivalence of Gaussian Sobolev norms and some weighted Wiener-Chaos norms», Bol. Matemáticas, vol. 25, n.º 1, pp. 49–63, ene. 2018.

MLA

Galvis, J. «On the equivalence of Gaussian Sobolev norms and some weighted Wiener-Chaos norms». Boletín de Matemáticas, vol. 25, n.º 1, enero de 2018, pp. 49-63, https://revistas.unal.edu.co/index.php/bolma/article/view/79020.

Turabian

Galvis, Juan. «On the equivalence of Gaussian Sobolev norms and some weighted Wiener-Chaos norms». Boletín de Matemáticas 25, no. 1 (enero 1, 2018): 49–63. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/bolma/article/view/79020.

Vancouver

1.
Galvis J. On the equivalence of Gaussian Sobolev norms and some weighted Wiener-Chaos norms. Bol. Matemáticas [Internet]. 1 de enero de 2018 [citado 22 de enero de 2025];25(1):49-63. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/79020

Descargar cita

Visitas a la página del resumen del artículo

151

Descargas

Los datos de descargas todavía no están disponibles.