Published
A Class of Abelian Rings
Una clase de anillos abelianos
Keywords:
Abelian ring, J-abelian ring, ring extension (en)anillos abelianos, anillos J-abelianos, extensiones de anillos (es)
Downloads
References
A. Badawi, On abelian r-regular rings, Comm. Algebra 25 (1997), no. 4,
- 1021.
V. P. Camillo and H. P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737 - 4749.
H. Chen, On strongly j-clean rings, Comm. Algebra 38 (2010), no. 10,
- 3804.
J. Cui and J. Chen, A class of quasipolar rings, Comm. Algebra 40 (2012), no. 12, 4471 - 4482.
S. Halicioglu H. Chen, O. Gurgun and A. Harmanci, Rings in which nilpotents belong to jacobson radical, An. Stiint. Univ. Al. I. Cuza Iasi. Mat.
(N.S.) LXII (2016), no. 2, 595 - 606.
N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra
(2000), no. 2, 477 - 488.
J. J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), no. 1, 137 - 152.
H. Kose and A. Harmanci, On a class of semicommutative rings, New
Zealand J. Math. 47 (2017), 69 - 85.
Z. Mesyan, The ideals of an ideal extension, J. Algebra Appl. 9 (2010),
no. 3, 407 - 431.
W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer.
Math. Soc. 229 (1977), 269 - 278.
W. K. Nicholson, Strongly clean rings and fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583 - 3592.
S. Halicioglu O. Gurgun and B. Ungor, A subclass of strongly clean rings, Commun. Math. 23 (2015), no. 1, 13 - 31.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad.
Ser. A Math. Sci. 73 (1997), 14 - 17.
R. B.Warfield, Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31 - 36.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2019 Boletín de Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.