Published

2018-01-01

Variational analysis of liquid crystals

Análisis variacional de cristales líquidos

Keywords:

liquid crystal, calculus of variations, partial order, Q-tensor, Landau-de Gennes, topological defects (en)
Cristales líquidos, Cálculo de variaciones, Landau-de Gennes, Transición de fase (es)

Authors

  • Duvan Henao Pontificia Universidad Católica de Chile
This is an exposition of the role played by the calculus of variations in the field of liquid crystals, in particular the way it provides a sound foundation to the mathematical modelling and numerical study of their response to the confining material's geometry and to external electromagnetic stimuli.
Se expone del rol del cálculo de variaciones en el área de los cristales líquidos, en particular el modo en que proporciona un cimiento sólido al modelamiento matemático y el estudio numérico de su respuesta a la geometría del material que lo contiene y a estimulos electromagnéticos externos.

References

P. J. Ackerman and I. I. Smalyukh, Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions, Preprint.

P. J. Ackerman and I. I. Smalyukh, Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids, Preprint.

J. Arsuaga, M.-C. Calderer, L. Hiltner, and M. Vezquez, A liquid crystal

model of viral dna encapsidation, arXiv:1712.00629, 2017.

J. M. Ball and A. Majumdar, Nematic liquid crystals: from maier-saupe to a continuum theory, Molecular Crystals and Liquid Crystals 525 (2010),

-11.

J. M. Ball and A. Zarnescu, Orientable and non-orientable line fields for

uniaxial nematic liquid crystals, Molecular Crystals and Liquid Crystals

(2008), 573-585.

J. M. Ball and A. Zarnescu, Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal. 202 (2011), 493-535.

H. Brezis, J. M. Coron, and E. H. Lieb, Harmonic maps with defects,

Comm. Math. Phys. 107 (1986), 649-705.

M. Cruz, N. Turok, P. Vielva, E. Martínez-González, and M. Hobson, A

Cosmic Microwave Background Feature Consistent with a Cosmic Texture,

Science 318 (2007), no. 5856, 1612-1614.

P. G. de Gennes, Short range order defects in the isotropic phase of nematics and cholesterics, Molecular Crystals and Liquid Crystals 12 (1971), no. 3, 193-214.

D. Dunmur, Liquid crystals: structured fluids for applications, DiStruc

Innovative Training Network Public Lectures, 2016, Web, 6 June 2018,

https://www.youtube.com/watch?v=y3iJIPhn5GY.

D. Dunmur and T. Sluckin, Soap, Science & Flat-Screen TVs, Oxford

University Press, 2014.

E. C. Gartland and S. Mkaddem, On the local instability of radial hedgehog configurations in nematic liquid crystals under Landau-de Gennes freeenergy models, Phys. Rev. E. 59 (1999), 563-567.

R. Hardt, D. Kinderlehrer, and F.-H. Lin, Existence and partial regularity

of static liquid crystal configurations, Comm. Math. Phys. 105 (1986),

no. 4, 547-570.

D. Henao and A. Majumdar, Symmetry of Uniaxial Global Landau-de

Gennes Minimizers in the Theory of Nematic Liquid Crystals, SIAM J.

Math. Anal. 44 (2012), 3217-3241.

D. Henao, A. Majumdar, and A. Pisante, Uniaxial versus biaxial character of nematic equilibria in three dimensions, Calculus of Variations and Partial Differential Equations 56 (apr 2017), no. 2, 55.

A. Majumdar, The Landau-de Gennes theory of nematic liquid crystals:

Uniaxiality versus Biaxiality, Commun. Pure Appl. Anal. 11 (2012), 1303-1337.

A. Majumdar and A. Zarnescu, Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond, Arch. Rational Mech. Anal. 196 (2010), 227-280.

A. Martinez, M. Ravnik, B. Lucero, R. Zumer, S. Visvanathan, and I. I.

Smalyukh, Mutually tangled colloidal knots and induced defect loops in

nematic fields, Nat. Mater. 13 (2014), 258-263.

N. J. Mottram and C. Newton, Introduction to Q-Tensor Theory,

arXiv:1409.3542, 2014.

R. Nochetto, S. Walker, and W. Zhang, A Finite Element Method for

Nematic Liquid Crystals with Variable Degree of Orientation, SIAM J.

Numer. Anal. 55 (2017), no. 3, 1357-1386.

M. R. Pakzad and T. Rivière, Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal. 13 (2003), no. 1, 223-257.

P. Popov, L. W. Honaker, E. E. Kooijman, E. K. Mann, and A. I. Jákli,

A liquid crystal biosensor for specific detection of antigens, Sensing and

Bio-sensing Research 8 (2016), 31-35.

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J.

Differential Geom. 17 (2016), no. 2, 307-335.

E. Schrödinger, What is Life?: The Physical Aspect of the Living Cell,

Cambridge University Press, 1948.

J. Seddon and R. Templer, The world of liquid crystals, New Scientist, 18 May 1991.

M. Tasinkevych, M. G. Campbell, and I. I. Smalyukh, Splitting, linking,

knotting, and solitonic escape of topological defects in nematic drops with

handles, Proc. Natl. Acad. Sci. USA 111 (2014), no. 46, 16268-16273.

U. Tkalec, M. Ravnik, S. Zumer, S. Copar, and I. Musevic, Reconfigurable knots and links in chiral nematic colloids, Science 333 (2011), no. 6038, 62-65.

S. Copar, U Tkalec, I. Musevic, and S. Zumer, Knot theory realizations in

nematic colloids, Proc. Natl. Acad. Sci. USA 112 (2015), no. 6, 1675{1680.

How to Cite

APA

Henao, D. (2018). Variational analysis of liquid crystals. Boletín de Matemáticas, 25(1), 65–76. https://revistas.unal.edu.co/index.php/bolma/article/view/79021

ACM

[1]
Henao, D. 2018. Variational analysis of liquid crystals. Boletín de Matemáticas. 25, 1 (Jan. 2018), 65–76.

ACS

(1)
Henao, D. Variational analysis of liquid crystals. Bol. Matemáticas 2018, 25, 65-76.

ABNT

HENAO, D. Variational analysis of liquid crystals. Boletín de Matemáticas, [S. l.], v. 25, n. 1, p. 65–76, 2018. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/79021. Acesso em: 22 jan. 2025.

Chicago

Henao, Duvan. 2018. “Variational analysis of liquid crystals”. Boletín De Matemáticas 25 (1):65-76. https://revistas.unal.edu.co/index.php/bolma/article/view/79021.

Harvard

Henao, D. (2018) “Variational analysis of liquid crystals”, Boletín de Matemáticas, 25(1), pp. 65–76. Available at: https://revistas.unal.edu.co/index.php/bolma/article/view/79021 (Accessed: 22 January 2025).

IEEE

[1]
D. Henao, “Variational analysis of liquid crystals”, Bol. Matemáticas, vol. 25, no. 1, pp. 65–76, Jan. 2018.

MLA

Henao, D. “Variational analysis of liquid crystals”. Boletín de Matemáticas, vol. 25, no. 1, Jan. 2018, pp. 65-76, https://revistas.unal.edu.co/index.php/bolma/article/view/79021.

Turabian

Henao, Duvan. “Variational analysis of liquid crystals”. Boletín de Matemáticas 25, no. 1 (January 1, 2018): 65–76. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/bolma/article/view/79021.

Vancouver

1.
Henao D. Variational analysis of liquid crystals. Bol. Matemáticas [Internet]. 2018 Jan. 1 [cited 2025 Jan. 22];25(1):65-76. Available from: https://revistas.unal.edu.co/index.php/bolma/article/view/79021

Download Citation

Article abstract page views

177

Downloads

Download data is not yet available.