Published
Variational analysis of liquid crystals
Análisis variacional de cristales líquidos
Keywords:
liquid crystal, calculus of variations, partial order, Q-tensor, Landau-de Gennes, topological defects (en)Cristales líquidos, Cálculo de variaciones, Landau-de Gennes, Transición de fase (es)
Downloads
References
P. J. Ackerman and I. I. Smalyukh, Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions, Preprint.
P. J. Ackerman and I. I. Smalyukh, Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids, Preprint.
J. Arsuaga, M.-C. Calderer, L. Hiltner, and M. Vezquez, A liquid crystal
model of viral dna encapsidation, arXiv:1712.00629, 2017.
J. M. Ball and A. Majumdar, Nematic liquid crystals: from maier-saupe to a continuum theory, Molecular Crystals and Liquid Crystals 525 (2010),
-11.
J. M. Ball and A. Zarnescu, Orientable and non-orientable line fields for
uniaxial nematic liquid crystals, Molecular Crystals and Liquid Crystals
(2008), 573-585.
J. M. Ball and A. Zarnescu, Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal. 202 (2011), 493-535.
H. Brezis, J. M. Coron, and E. H. Lieb, Harmonic maps with defects,
Comm. Math. Phys. 107 (1986), 649-705.
M. Cruz, N. Turok, P. Vielva, E. Martínez-González, and M. Hobson, A
Cosmic Microwave Background Feature Consistent with a Cosmic Texture,
Science 318 (2007), no. 5856, 1612-1614.
P. G. de Gennes, Short range order defects in the isotropic phase of nematics and cholesterics, Molecular Crystals and Liquid Crystals 12 (1971), no. 3, 193-214.
D. Dunmur, Liquid crystals: structured fluids for applications, DiStruc
Innovative Training Network Public Lectures, 2016, Web, 6 June 2018,
https://www.youtube.com/watch?v=y3iJIPhn5GY.
D. Dunmur and T. Sluckin, Soap, Science & Flat-Screen TVs, Oxford
University Press, 2014.
E. C. Gartland and S. Mkaddem, On the local instability of radial hedgehog configurations in nematic liquid crystals under Landau-de Gennes freeenergy models, Phys. Rev. E. 59 (1999), 563-567.
R. Hardt, D. Kinderlehrer, and F.-H. Lin, Existence and partial regularity
of static liquid crystal configurations, Comm. Math. Phys. 105 (1986),
no. 4, 547-570.
D. Henao and A. Majumdar, Symmetry of Uniaxial Global Landau-de
Gennes Minimizers in the Theory of Nematic Liquid Crystals, SIAM J.
Math. Anal. 44 (2012), 3217-3241.
D. Henao, A. Majumdar, and A. Pisante, Uniaxial versus biaxial character of nematic equilibria in three dimensions, Calculus of Variations and Partial Differential Equations 56 (apr 2017), no. 2, 55.
A. Majumdar, The Landau-de Gennes theory of nematic liquid crystals:
Uniaxiality versus Biaxiality, Commun. Pure Appl. Anal. 11 (2012), 1303-1337.
A. Majumdar and A. Zarnescu, Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond, Arch. Rational Mech. Anal. 196 (2010), 227-280.
A. Martinez, M. Ravnik, B. Lucero, R. Zumer, S. Visvanathan, and I. I.
Smalyukh, Mutually tangled colloidal knots and induced defect loops in
nematic fields, Nat. Mater. 13 (2014), 258-263.
N. J. Mottram and C. Newton, Introduction to Q-Tensor Theory,
arXiv:1409.3542, 2014.
R. Nochetto, S. Walker, and W. Zhang, A Finite Element Method for
Nematic Liquid Crystals with Variable Degree of Orientation, SIAM J.
Numer. Anal. 55 (2017), no. 3, 1357-1386.
M. R. Pakzad and T. Rivière, Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal. 13 (2003), no. 1, 223-257.
P. Popov, L. W. Honaker, E. E. Kooijman, E. K. Mann, and A. I. Jákli,
A liquid crystal biosensor for specific detection of antigens, Sensing and
Bio-sensing Research 8 (2016), 31-35.
R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J.
Differential Geom. 17 (2016), no. 2, 307-335.
E. Schrödinger, What is Life?: The Physical Aspect of the Living Cell,
Cambridge University Press, 1948.
J. Seddon and R. Templer, The world of liquid crystals, New Scientist, 18 May 1991.
M. Tasinkevych, M. G. Campbell, and I. I. Smalyukh, Splitting, linking,
knotting, and solitonic escape of topological defects in nematic drops with
handles, Proc. Natl. Acad. Sci. USA 111 (2014), no. 46, 16268-16273.
U. Tkalec, M. Ravnik, S. Zumer, S. Copar, and I. Musevic, Reconfigurable knots and links in chiral nematic colloids, Science 333 (2011), no. 6038, 62-65.
S. Copar, U Tkalec, I. Musevic, and S. Zumer, Knot theory realizations in
nematic colloids, Proc. Natl. Acad. Sci. USA 112 (2015), no. 6, 1675{1680.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2019 Boletín de Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.