Published
Preserving data moments in density estimation via diffusion using the finite element method
Preservación de momentos de datos en estimación de densidades vía difusión usando el método de elementos finitos
Keywords:
KDE, Diffusion equation, Moments preserving evolution, FEM, Lagrange Multipliers (en)KDE, Ecuación de Difusión, evolución de preservación de momentos, FEM, Multiplicadores de Lagrange (es)
Downloads
References
13. Poisson equation with pure Neumann boundary conditions, The FEniCS Project, https://fenicsproject.org/olddocs/dolfin/2016.2.0/python/demo/documented/neumann-poisson/python/documentation.html.
2D Density Estimation via Diffusion with FEM-Neumann Boundary Conditions. Patarroyo K., Available online, https://goo.gl/Qlpruk.
C. Geuzaine and J. -F. Remacle, Gmsh (C), (1997-2017). https://gmsh.info/.
Rocket Clipart #18923, WikiClipArt, https://wikiclipart.com/rocket-clipart_18923/.
Cadcorp Spatial Information System R (Cadcorp SIS R), [A spatial statistics program for the analysis of crime incident locations], 2017, https://www.icpsr.umich.edu/CrimeStat/ CrimeStat R.
National Institute of Justice, Hot Spot Mapping Using KDE, 2017, https://www.cadcorp.com/about-us/.
M. S. Alnaes, J. Hake J. Blechta, B. Kehlet A. Johansson, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, The FEniCS Project Version 1.5. Archive of Numerical Software, https://fenicsproject.org/ 3 (2015).
Z. I. Botev, J. F. Grotowski, and D. P. Kroese, Kernel density estimation via Diffusion, Ann. Statist 38 (2010), no. 5, 29162957.
P. Chaudhuri and J. S. Marron, Scale space view of of curve estimation, Ann. Statist., 2000, 28 408428. MR1790003.
M. S. Gerber, Predicting crime using Twitter and kernel density estimation, Decision Support Systems 61 (2014), no. 115, 125.
E. L. Glaeser and B. Sacerdote, Why is there more crime in cities?, National Bureau of Economic Research Working Paper 4530, 1996.
F. Gómez, A. Torres, J. Galvis, J. Camargo, and O. Martinez, Hotspot mapping for Perception of Security. Smart Cities Conference (ISC2), IEEE International, 2016.
M. G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation, and Applications, Springer-Verlag Italia, Milano, 2013.
N. Memon, J. D. Farley, D. L. Hicks, T. Rosenorn, and (Eds.), Mathematical Methods in Counterterrorism, Springer, 2009 Edition.
Y. K. Patarroyo, Mean conservation for density estimation via diffusion using the finite element method, Submitted to Boletín de Matemáticas (2017), https://arxiv.org/pdf/1702.07962.pdf.
S. Salsa, Partial differential equations in action from modelling to theory, Springer-Verlag Italia, Milano., 2008.
B. W. Silverman, Density estimation for statistics and data analysis, Chapman and Hall, London., 1986.
S. Tench, H. Fry, and P. Gill, Spatio-temporal patterns of IED usage by the Provisional Irish Republican Army, European Journal of Applied Mathematics 27 (2016), no. 3, 377-402.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2020 Boletín de Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.