Publicado

2022-10-10

Water relations and gas exchange in Ruilopezia atropurpurea (Asteraceae), a giant rosette growing under contrasting microclimates in the high tropical Andes

Relaciones hídricas e intercambio de gases en Ruilopezia atropurpurea (Asteraceae), una roseta gigante que crece en microclimas contrastantes en los altos Andes tropicales

DOI:

https://doi.org/10.15446/caldasia.v44n3.86592

Palabras clave:

CO2 assimilation rate, leaf water potential, paramo, phenotypic plasticity, plant functional traits. (en)
páramo, plasticidad fenotípica, potencial hídrico foliar, rasgos funcionales de plantas, tasa de asimilación de CO2 (es)

Descargas

Autores/as

Tropical high andean ecosystems, known as paramos, are unique because they are highly diverse, have a high number of endemic species, and play an essential role in different ecosystem services, but are especially susceptible to climate change. Most of the giant rosettes, a dominant growth-form in the paramos, depend on unique features like stems protected by marcescent leaves, voluminous stem pith, and leaf pubescence. However, Ruilopezia atropurpurea lacks these characteristics and must respond differently to endure the paramo extreme conditions. Additionally, unlike other rosettes, this species is found under contrasting exposed and understory microenvironments so that intraspecific plasticity is also expected. We evaluated the responses of R. atropurpurea in terms of leaf water relations, gas exchange, and morphological characteristics in temporal (seasonal and daily variations) and spatial (microsite differences) scales in a Venezuelan paramo. R. atropurpurea displayed lower leaf water potentials (minimum leaf water potentials of -1.5 MPa and -1.8 MPa at the turgor loss point), higher leaf conductance (620 mmol m-2s-1), transpiration (5 molm-2s-1), and CO2 assimilation (13 mmol m-2s-1) rates compared to other paramo giant rosettes. A reduction in leaf area and specific leaf area occurred from understory to exposed sites. R. atropurpurea diverges from the typical responses of most paramo giant rosettes to the extreme environmental conditions. This species’ morphological and physiological plasticity permits it inhabit under variable microclimatic conditions, but despite its confirmed plasticity, it is not able to reach higher elevations as other giant rosettes successfully have.

Los ecosistemas tropicales de las partes altas de los Andes, páramos, son únicos debido a su alta diversidad, gran número de especies endémicas y rol esencial en servicios ecosistémicos, pero son susceptibles al cambio climático. La mayoría de las rosetas gigantes, forma dominante de crecimiento en los páramos, poseen características únicas como tallo cubierto por hojas marcescentes, médula de tallo voluminosa y pubescencia foliar. Sin embargo, Ruilopezia atropurpurea no posee estas características y depende de respuestas particulares para sobrellevar ambientes extremos. Adicionalmente, esta especie habita microambientes contrastantes bajo copas de plantas y expuestas por lo que esperaríamos cierta plasticidad intraespecífica. Evaluamos las respuestas de R. atropurpurea en términos de relaciones hídricas, intercambio de gases y características morfológicas en tiempo (variaciones estacionales y diarias) y espacio (diferencias entre micrositios) en un páramo de los Andes venezolanos. R. atropurpurea mostró potenciales hídricos foliares menores (potenciales hídricos foliares mínimos de -1,5 MPa y -1,8 MPa de pérdida de turgor), mayor conductancia foliar (620 mmol m-2s-1), transpiración (5 molm-2s-1) y asimilación de CO2 (13 mmol m-2s-1) en comparación con otras rosetas gigantes. Se encontró una reducción en área foliar y área foliar específica entre plantas bajo copas y expuestas. Las respuestas de R. atropurpurea a las condiciones ambientales extremas contrastan con aquellas de la mayoría de las rosetas gigantes de páramo. Su plasticidad morfológica y fisiológica le permite establecerse en condiciones microclimáticas variables, pero a pesar de esta plasticidad, no tiene la capacidad para alcanzar mayores elevaciones como lo logran exitosamente otras rosetas gigantes.

Referencias

Apelt A, Bavin L, Dickey E, Gruber T, Kerton B, Norzin T, Ransome-Gilding E, Worth P, Yang H. 2019. The effect of UV light intensity on anthocyanin content of Richea continentis leaves. Field Studies in Ecology 2(1).

Barnes PW, Searles PS, Ballare CL, Ryel RJ, Caldwell MM. 2000. Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: Field and laboratory studies. Physiol. Plant. 109(3):274-283. doi: https://doi.org/10.1034/j.1399-3054.2000.100308x DOI: https://doi.org/10.1034/j.1399-3054.2000.100308.x

Barnes PW, Ryel RJ, Flint SD. 2017. UV screening in native and non-native plant species in the tropical alpine: Implications for climate change-driven migration of species to higher elevations. Front. Plant Sci. 8:1451. doi: https://doi.org/10.3389/fpls.2017.01451 DOI: https://doi.org/10.3389/fpls.2017.01451

Baruch Z, Smith AP. 1979. Morphological and physiological correlates of niche breath in two species of Espeletia (Compositae) in the Venezuelan Andes. Oecologia 38(1):71-82. doi: https://doi.org/10.1007/BF00347825 DOI: https://doi.org/10.1007/BF00347825

Bazzaz FA, Bazzaz F. 1996. Plants in Changing Environments: Linking Physiological, Populational and Community Ecology. Cambridge, United Kingdom: Cambridge University Press.

Beniston M. 2003. Climatic change in mountain regions: a review of possible impacts. Clim. Change 59:5-31. doi: https://doi.org/10.1023/A:1024458411589 DOI: https://doi.org/10.1007/978-94-015-1252-7_2

Boardman NK. 1977. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiol. 28(1):355-377. doi: https://doi.org/10.1146/annurev.pp.28.060177.002035 DOI: https://doi.org/10.1146/annurev.pp.28.060177.002035

Buytaeart W, Vuille M, Dewulf A, Urrutia R, Karmalkar A, Celleri R. 2010. Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management. Hydrol. Earth Syst Sci. 14(7):1247-1258. doi: https://doi.org/10.5194/hess-14-1247-2010 DOI: https://doi.org/10.5194/hess-14-1247-2010

Briceño B, Morillo G. 2002. Catálogo abreviado de las plantas con flores de los páramos de Venezuela. Parte I. Dicotiledóneas (Magnoliopsida). Acta Bot. Venez. 25:1-46.

Cárdenas MF, Tobón C, Rock BN, del Valle JI. 2018. Ecophysiology of frailejones (Espeletia spp.), and its contribution to the hydrological functioning of páramo ecosystems. Plant Ecol. 219(2):185-198. doi: https://doi.org/10.1007/s11258-017-0787-x DOI: https://doi.org/10.1007/s11258-017-0787-x

Castrillo M. 2006. Fotosíntesis en tres poblaciones altitudinales de la planta andina Espeletia schultzii (Compositae). Rev. Biol. Trop. 54(4):1143-1149. doi: https://doi.org/10.15517/rbt.v54i4.3091 DOI: https://doi.org/10.15517/rbt.v54i4.3091

Cuatrecasas J. 1976. A new subtribe in the Heliantheae (Compositae) Espeletiinae. Phytologia 35:43-61. doi: https://doi.org/10.5962/bhl.part.2608 DOI: https://doi.org/10.5962/bhl.part.2608

Cuesta F, Llambí LD, Huggel C, Drenkhan F, Gosling WD, Muriel P, Jaramillo R, Tovar C. 2019. New land in the Neotropics: a review of biotic community, ecosystem and landscape transformations in the face of climate change and glacier change. Reg. Environ. Change 19:1623-1624. doi: https://doi.org/10.1007/s10113-019-01499-3 DOI: https://doi.org/10.1007/s10113-019-01499-3

Dulhoste R. 2010. Respuestas ecofisiológicas de plantas del límite arbóreo (selva nublada-páramo) al estrés térmico, hídrico y lumínico en los Andes Venezolanos [Tesis]. [Mérida]: Universidad de Los Andes.

Estrada C, Goldstein G, Monasterio M. 1991. Leaf dynamics and water relations of Espeletia spicata and E. timotensis, two giant rosettes of the desert Paramo in the tropical Andes. Acta Oecol. 12(5):603-616.

Fetene M, Nauke P, Lüttge U, Beck E. 1997. Photosynthesis and photoinhibition in a tropical alpine giant rosette plant, Lobelia rhynchopetalum. New Phytol. 137(3):453-461. doi: https://doi.org/10.1046/j.1469-8137.1997.00844.x DOI: https://doi.org/10.1046/j.1469-8137.1997.00844.x

Goldstein G, Meinzer FC. 1983. Influence of insulating dead leaves and low temperatures on water balance in an Andean giant rosette plant. Plant Cell Environ. 6(8):649-656. doi: https://doi.org/10.1111/1365-3040.ep11589230 DOI: https://doi.org/10.1111/j.1365-3040.1983.tb01180.x

Goldstein G, Meinzer FC, Monasterio M. 1984. The role of capacitance in the water balance of Andean giant rosette species. Plant Cell Environ. 7(3):179-186. doi: https://doi.org/10.1111/1365-3040.ep11614612 DOI: https://doi.org/10.1111/1365-3040.ep11614612

Goldstein G, Meinzer FC, Monasterio M. 1985. Physiological and mechanical factors in relation to size-dependent mortality in Andean giant rosette species. Acta Oecol. 6(3):263-275.

Goldstein G, Rada F, Canales J, Zabala O. 1989. Leaf gas exchange of two giant caulescent rosette species. Acta Oecol. 10(4):359-370.

Hedberg O. 1964. Features of Afroalpine plant ecology. Acta Phytogeogr. Suec. 49:1-114.

León-García IV. 2015. Physiological response to light in 8 species from Páramo El Verjon with three different types of growth. [Tesis]. [Bogota]: Universidad de Los Andes.

León-García IV, Lasso E. 2019. High heat tolerance in plants from the Andean highlands: Implications for paramos in a warmer world. PloS ONE 14(11): e0224218. doi: https://doi.org/10.1371/journal.pone.0224218 DOI: https://doi.org/10.1371/journal.pone.0224218

Luteyn JL, Churchill SP, Griffing D, Gradstein SR, Sipman HJ, Gavilanes MR. 1999. Páramos: a checklist of plant diversity, geographical distribution and botanical literature. Memoirs of the New York Botanical Garden. Vol 84. New York, United States: Botanical Garden Press.

Markesteijn L, Poorter L, Bongers F. 2007. Light-dependent leaf trait variation in 43 tropical dry forest tree species. Am. J. Bot. 94(4):515-525. doi: https://doi.org/10.3732/ajb.94.4.515 DOI: https://doi.org/10.3732/ajb.94.4.515

Marron N, Dreyer E, Boudouresque E, Delay D, Petit JM, Delmotte FM, Brignolas F. 2003. Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus×canadensis (Moench) clones, ‘Dorskamp’ and ‘Luisa Avanzo’. Tree Physiol. 23(18):1225-1235. doi: https://doi.org/10.1093/treephys/23.18.1225 DOI: https://doi.org/10.1093/treephys/23.18.1225

Mavárez J, Bézy S, Goeury T, Fernández A, Aubert S. 2019. Current and future distributions of Espeletiinae (Asteraceae) in the Venezuelan Andes based on statistical downscaling of climatic variables and niche modelling. Plant Ecol. Divers. 12(6):633-647. doi: https://doi.org/10.1080/17550874.2018.1549599 DOI: https://doi.org/10.1080/17550874.2018.1549599

Meinzer FC, Goldstein G. 1986. Adaptations for water and thermal balance in Andean giant rosette plants. In: Givnish TH, editor. On the Economy of Plant Form and Function. Cambridge, United Kingdom: Cambridge University Press. p. 381-411.

Meinzer FC, Goldstein G, Rada F. 1994. Páramo microclimate and leaf thermal balance of Andean giant rosette plants. In: Rundel PW, Smith AP, Meinzer FC, editors. Tropical Alpine environments: Plant Form and Function. Cambridge, United Kingdom: Cambridge University Press. p. 45-59. DOI: https://doi.org/10.1017/CBO9780511551475.004

Meinzer FC, Goldstein G, Rundel PW. 1985. Morphological changes along an altitude gradient and their consequences for an Andean giant rosette plant. Oecologia 65(2):278-283. doi: https://doi.org/10.1007/BF00379230 DOI: https://doi.org/10.1007/BF00379230

Monasterio M. 1980. Los páramos andinos como región natural. Características biogeográficas generales y afinidad con otras regiones andinas. In: Monasterio M, editor. Estudios Ecológicos en los Páramos Andinos. Mérida, Venezuela: Ediciones Universidad de Los Andes. p. 15-27.

Monasterio M, Reyes S. 1980. Diversidad Ambiental y variación de la vegetación en los páramos de los Andes Venezolanos. In: Monasterio M, editor. Estudios Ecológicos en los Páramos Andinos. Mérida, Venezuela: Ediciones Universidad de Los Andes. p. 47-91.

Monasterio M, Sarmiento L. 1991. Adaptive radiation of Espeletia in the cold Andean tropics. Trends Ecol. Evol. 6(12):387-391. doi: https://doi.org/10.1016/0169-5347(91)90159-U DOI: https://doi.org/10.1016/0169-5347(91)90159-U

Monasterio M, Vuilleumier F. 1986. High tropical mountain biota of the world. In: Vuilleumier F, Monasterio M, editors. High Altitude Tropical Biogeography. Oxford, United Kingdom: Oxford University Press. p. 3-7.

Mora-Osejo LE. 2001. Contribuciones al estudio comparativo de la conductancia y de la transpiración foliar de especies de plantas de páramo. Bogotá, Colombia: Colección Jorge Alvarez Lleras. Editora Guadalupe Ltda.

Muller L. 1961. Un aparato micro Kjeldahl simple para análisis rutinarios rápidos de materias vegetales. Turrialba, 11(1):17-25.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772):853-858. doi: https://doi.org/10.1038/35002501 DOI: https://doi.org/10.1038/35002501

Poorter L. 2009. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytol. 181(4):890-900. doi: https://doi.org/10.1111/j.1469-8137.2008.02715.x DOI: https://doi.org/10.1111/j.1469-8137.2008.02715.x

Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182(3):565-588. doi: https://doi.org/10.1111/j.1469-8137.2009.02830.x DOI: https://doi.org/10.1111/j.1469-8137.2009.02830.x

Pouchon C, Fernández A, Nassar JM, Boyer F, Aubert S, Lavergne S, Mavárez J. 2018. Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Syst. Biol. 67(6):1041-1060. doi: https://doi.org/10.1093/sysbio/syy022 DOI: https://doi.org/10.1093/sysbio/syy022

Rada F. 2016. Functional diversity in tropical high elevation giant rosettes. In: Goldstein G, Santiago LS, editors. Tropical Tree Physiology: Adaptations and responses in a changing environment. Basel, Switzerland: Springer. p. 181-202. DOI: https://doi.org/10.1007/978-3-319-27422-5_8

Rada F, Goldstein G, Azócar A, Meinzer FC. 1985. Freezing avoidance in Andean giant rosette plants. Plant Cell Environ. 8(7):501-507. doi: https://doi.org/10.1111/j.1365-3040.1985.tb01685.x DOI: https://doi.org/10.1111/j.1365-3040.1985.tb01685.x

Rada F, González J, Azócar A, Briceño B, Jaimez R. 1992. Net photosynthesis-leaf temperature relations in plant species with different height along an altitudinal gradient. Acta Oecol. 13(5):535-542.

Rada F, Azócar A, González J, Briceño B. 1998. Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes. Acta Oecol. 19(1):73-79. doi: https://doi.org/10.1016/S1146-609X(98)80010-6 DOI: https://doi.org/10.1016/S1146-609X(98)80010-6

Rada F, Azócar A, Rojas-Altuve A. 2012. Water relations and gas exchange in Coespeletia moritziana (Sch.Bip) Cuatrec., a giant rosette species of the high tropical Andes. Photosynthetica 50(3):429-436. doi: https://doi.org/10.1007/s11099-012-0050-6 DOI: https://doi.org/10.1007/s11099-012-0050-6

Rada F, Azócar A, García-Núñez C. 2019. Plant functional diversity in tropical Andean páramos. Plant Ecol. Divers. 12(6):539-553. doi: https://doi.org/10.1080/17550874.2019.1674396 DOI: https://doi.org/10.1080/17550874.2019.1674396

Rasband WS. c1997-2018. ImageJ, U.S. National Institute of Health, Bethesda, Maryland, USA. [Last accessed: 01 ene 2018]. https://imagej.nih.gov/ij/

Rauscher JT. 2002. Molecular phylogenetics of the Espeletia complex (Asteraceae): evidence from nrDNA ITS sequences on the closest relatives of an Andean adaptive radiation. Am. J. Bot. 89(7):1074-1084. doi: https://doi.org/10.3732/ajb.89.7.1074 DOI: https://doi.org/10.3732/ajb.89.7.1074

Reich PB, Walters MB, Ellsworth DS. 1997. From tropics to tundra: global convergence in plant functioning. PNAS 94(25):13730-13734. doi: https://doi.org/10.1073/pnas.94.25.13730 DOI: https://doi.org/10.1073/pnas.94.25.13730

Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology 80(6):1955-1969. doi: https://doi.org/10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2

Rosquete C. 2004. Estudio del balance energético foliar en Ruilopezia atropurpurea (especie no pubescente) y Espeletia schultzii (especie pubescente) en el Páramo Venezolano. [Tesis]. Mérida]: Universidad de Los Andes.

Sánchez A, Posada JM, Smith WK. 2014. Dynamic cloud regimes, incident sunlight and leaf temperatures in Espeletia grandiflora and Chusquea tessellate, two representative species of the Andean páramo, Colombia. Arct. Antarct. Alp. Res. 46(2):371-378. doi: https://doi.org/10.1657/1938-4246-46.2.371 DOI: https://doi.org/10.1657/1938-4246-46.2.371

Sánchez A, Rey-Sánchez AC, Posada JM, Smith WK. 2018. Interplay of seasonal sunlight, air and leaf temperature in two alpine páramo species, Colombian Andes. Agr. Forest Meteorol. 253-254:38-47. doi: https://doi.org/10.1016/j.agrformet.2018.01.033 DOI: https://doi.org/10.1016/j.agrformet.2018.01.033

Schulze E-D, Beck E, Scheibe R, Ziegler P. 1985. Carbon dioxide assimilation and stomatal response of Afroalpine giant rosette plants. Oecologia 65(2):207-213. doi: https://doi.org/10.1007/BF00379219 DOI: https://doi.org/10.1007/BF00379219

Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, Dantas V de L, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamlyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Le Bagousse-Pinguet Y, Li Y, Mason N, Messier J, Nakashizuka T, McC Overton H, Peltzer DA, Pérez-Ramos M, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA. 2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18(12):1406-1419. doi: https://doi.org/10.1111/ele.12508 DOI: https://doi.org/10.1111/ele.12508

Sierra F. 2016. Evasión al congelamiento en Espeletia schultzii Wedd. a lo largo de un gradiente altitudinal en el páramo venezolano. [Tesis]. [Mérida]: Universidad de Los Andes. Skiljan I. c2012. IrfanView. [Last accessed: 01 ene 2018]. http://URL.tuwien.ac.at/

Sklenář P, Hedberg I, Cleef AM. 2014. Island biogeography of tropical alpine floras. J. Biogeogr. 41(2):287–297. doi: https://doi.org/10.1111/jbi.12212 DOI: https://doi.org/10.1111/jbi.12212

Smith AP. 1979. The function of dead leaves in Espeletia schultzii (Compositae), an Andean giant rosette species. Biotropica 11(1):43-47. doi: https://doi.org/10.2307/2388171 DOI: https://doi.org/10.2307/2388171

SPSS. 2000. SPSS for Windows, version 10.0.7 Chicago, SPSS Inc.

Valladares F, Matesanz S, Guilhaumon F, Araujo MB, Balaguer L, Benito-Garzón M, Cornwell W, Gianoli E, van Kleunen M, Naya DE, Nicotra AB, Poorter H, Zavala MA. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17(11):1351-1364. doi: https://doi.org/10.1111/ele.12348 DOI: https://doi.org/10.1111/ele.12348

Villar R, Marañón T, Quero JL, Panadero P, Arenas F, Lambers H. 2005. Variation in relative growth rate of 20 Aegilops species (Poaceae) in the field: The importance of net assimilation rate of specific leaf area depends on the time scale. Plant Soil 272(1-2):11-27. doi: https://doi.org/10.1007/s11104-004-3846-8 DOI: https://doi.org/10.1007/s11104-004-3846-8

Wellstein C, Poschlod P, Gohlke A, Chelli S, Campetella G, Rosbakh S, Canullo R, Kreyling J, Jentsch A, Beierkuhnlein C. 2017. Effects of extreme drought on specific leaf area of grassland species: A meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Glob. Change Biol. 23(6):2473-2481. doi: https://doi.org/10.1111/gcb.13662 DOI: https://doi.org/10.1111/gcb.13662

Wright IJ, Reich PB, Westoby M. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15(4):423-434. doi: https://doi.org/10.1046/j.0269-8463.2001.00542.x DOI: https://doi.org/10.1046/j.0269-8463.2001.00542.x

Cómo citar

APA

Rada, F. y Navarro, A. (2022). Water relations and gas exchange in Ruilopezia atropurpurea (Asteraceae), a giant rosette growing under contrasting microclimates in the high tropical Andes. Caldasia, 44(3), 553–566. https://doi.org/10.15446/caldasia.v44n3.86592

ACM

[1]
Rada, F. y Navarro, A. 2022. Water relations and gas exchange in Ruilopezia atropurpurea (Asteraceae), a giant rosette growing under contrasting microclimates in the high tropical Andes. Caldasia. 44, 3 (sep. 2022), 553–566. DOI:https://doi.org/10.15446/caldasia.v44n3.86592.

ACS

(1)
Rada, F.; Navarro, A. Water relations and gas exchange in Ruilopezia atropurpurea (Asteraceae), a giant rosette growing under contrasting microclimates in the high tropical Andes. Caldasia 2022, 44, 553-566.

ABNT

RADA, F.; NAVARRO, A. Water relations and gas exchange in Ruilopezia atropurpurea (Asteraceae), a giant rosette growing under contrasting microclimates in the high tropical Andes. Caldasia, [S. l.], v. 44, n. 3, p. 553–566, 2022. DOI: 10.15446/caldasia.v44n3.86592. Disponível em: https://revistas.unal.edu.co/index.php/cal/article/view/86592. Acesso em: 16 ene. 2025.

Chicago

Rada, Fermin, y Antonio Navarro. 2022. «Water relations and gas exchange in Ruilopezia atropurpurea (Asteraceae), a giant rosette growing under contrasting microclimates in the high tropical Andes». Caldasia 44 (3):553-66. https://doi.org/10.15446/caldasia.v44n3.86592.

Harvard

Rada, F. y Navarro, A. (2022) «Water relations and gas exchange in Ruilopezia atropurpurea (Asteraceae), a giant rosette growing under contrasting microclimates in the high tropical Andes», Caldasia, 44(3), pp. 553–566. doi: 10.15446/caldasia.v44n3.86592.

IEEE

[1]
F. Rada y A. Navarro, «Water relations and gas exchange in Ruilopezia atropurpurea (Asteraceae), a giant rosette growing under contrasting microclimates in the high tropical Andes», Caldasia, vol. 44, n.º 3, pp. 553–566, sep. 2022.

MLA

Rada, F., y A. Navarro. «Water relations and gas exchange in Ruilopezia atropurpurea (Asteraceae), a giant rosette growing under contrasting microclimates in the high tropical Andes». Caldasia, vol. 44, n.º 3, septiembre de 2022, pp. 553-66, doi:10.15446/caldasia.v44n3.86592.

Turabian

Rada, Fermin, y Antonio Navarro. «Water relations and gas exchange in Ruilopezia atropurpurea (Asteraceae), a giant rosette growing under contrasting microclimates in the high tropical Andes». Caldasia 44, no. 3 (septiembre 1, 2022): 553–566. Accedido enero 16, 2025. https://revistas.unal.edu.co/index.php/cal/article/view/86592.

Vancouver

1.
Rada F, Navarro A. Water relations and gas exchange in Ruilopezia atropurpurea (Asteraceae), a giant rosette growing under contrasting microclimates in the high tropical Andes. Caldasia [Internet]. 1 de septiembre de 2022 [citado 16 de enero de 2025];44(3):553-66. Disponible en: https://revistas.unal.edu.co/index.php/cal/article/view/86592

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

917

Descargas

Los datos de descargas todavía no están disponibles.