Incidencia de las lluvias y del precio en la oferta de leche cruda en los departamentos de Córdoba y Sucre, Colombia
Effects of Rainfall and Price on the Raw-Milk Supply in Cordoba and Sucre Department, Colombia
Impacto das chuvas e do preço na oferta de leite cru nos departamentos de Córdoba e Sucre, Colômbia
DOI:
https://doi.org/10.15446/ede.v33n63.101746Palabras clave:
Microeconomía agraria, Econometría de series de tiempo, raíces unitarias, cointegración, modelo autoregresivo con retardos distribuídos (es)Agrarian microeconomics, time series econometrics, unit roots, cointegration, autoregresive distributed lag model (en)
microeconomia agrícola, econometria de séries temporais, raízes unitárias, cointegração, modelo autorregressivo com defasagens distribuídas (pt)
Descargas
Se utiliza modelación econométrica de series de tiempo para contrastar empíricamente la relación de largo y corto plazo entre la oferta de leche cruda en los departamentos de Córdoba y Sucre con el precio y las lluvias durante el período enero/2006-diciembre/2018. Los resultados del modelo autorregresivo con retardos distribuidos no lineal indican que en el largo plazo la respuesta de la oferta es inelástica y simétrica: ante una variación de 1% del precio real reacciona en el mismo sentido de este en una magnitud de 0,96% en Córdoba; en Sucre, la respuesta en el modelo estándar es inversa, no esperada, pero no tiene significancia estadística; ante la desviación estándar de la lluvia reacciona en sentido contrario a esta: 0,43% en el primero y 0,31% en el segundo. En el corto plazo, la respuesta es inelástica al precio, pero asimétrica en Córdoba: la reacción frente a variaciones positivas y negativas de este es inversa y de magnitud significativa diferente hasta cinco meses atrás; ante la desviación estándar de la lluvia es simétrica y en general positiva hasta el retardo cinco.
Econometric modeling of time series is used to contrast the long- and short-term relationship among the supply of raw milk, the price, and rainfall during the period January/2006-December/2018 in two departments in Colombia: Córdoba and Sucre. The results of the Non-Lineal Autoregressive Distributed Lags model indicate that in the long term, the response of the supply is inelastic and symmetric. This means that a 1% change in the real price reacts in the same direction in a magnitude of 0,96% in Córdoba, and 0,30% in Sucre, but this late result is not expected and it is insignificant statistically; the relationship is inverse with the standard deviation of the rain on 0,43% in the first location and 0,31% on the second. In the short term, the response is inelastic to price, but asymmetric in Córdoba: positive and negative price variations are inversely proportional and significantly different in magnitude up to five months lags; the standard deviation of the rain is symmetric and in general positive up to lag five.
A modelagem econométrica de séries temporais é usada para testar empiricamente a relação de longo e curto prazo entre a oferta de leite cru nos departamentos de Córdoba e Sucre com o preço e a precipitação durante o período de janeiro/2006 a dezembro/2018. Os resultados do modelo autorregressivo com defasagens distribuídas não lineares indicam que, no longo prazo, a resposta da oferta é inelástica e simétrica: com uma variação de 1% no preço real, ela reage na mesma direção que o preço em 0,96% em Córdoba; em Sucre, a resposta no modelo padrão é inversa, não esperada, mas não tem significância estatística; com o desvio padrão da precipitação, ela reage na direção oposta: 0,43% no primeiro caso e 0,31% no segundo. No curto prazo, a resposta é inelástica ao preço, mas assimétrica em Córdoba: a reação a variações positivas e negativas no preço é inversa e de magnitude significativa diferente até cinco meses atrás; para o desvio padrão da precipitação, é simétrica e geralmente positiva até a defasagem cinco.
Traduzido com a versão gratuita do tradutor - DeepL.com
Referencias
Aadland, D. (2004). Cattle Cycles Heterogeneous Expectations and the Age Distribution of Capital. Journal of Economic Dinamics and Control, 28(10), 1997-2002 https://doi.org/10.1016/j.jedc.2003.08.003
Adelaja, A. O. (1991). Prices Change, Supply Elasticities, Industry Organization, and Dairy Output Distribution. American Journal of Agricultural Economics, 73 (1), 89-103. http://doi.org/10.2307/1242886
Ardeni, P., & Freebairn, J. (2002). The Macroeconomics of Agriculture. En B., Gardner, & G., Rausser, (eds.), Handbook of Agricultural Economics, Agricultural and its External Linkage (pp.1456-1485). Elsevier.
Askari, H., & Cummings, J. T. (1977). Estimating Agricultural Supply Response with the Nerlove Model: A Survey. International Economics Review, 18 (2), 257-292. https://doi.org/10.2307/2525749
Bessler, D., & Palma, M. (2019). On the Evolution of Agricultural Econometrics. En G. Cramer, C. Paudel, & A. Schmitz (eds). The Routledge Handbook of Agricultural Economics (pp. 467-487). Taylor & Francis Group. https://doi.org/10.4324/9781315623351
Bhattacharya, P., Rath, B., & Dash, A. (2016). Supply Response of Milk Production: Analysis and Implications for BRIC Countries. Applied Econometrics and International Development, 16 (1), 179-192. https://ideas.repec.org/a/eaa/aeinde/v16y2016i1_14.html
Blayney, P., & Mittelhammer, R. C. (1990). Decomposition of Milk Supply Response into Technology and Price -Induced Effects. American Journal of Agricultural Economics, 72 (4), 864-972. https://doi.org/10.2307/1242618
Box, G., & Jenkins,G. (1970).Time Series Analysis. Forecasting and Control.Holden-Day.
Bozic, M., Kanter C., & Gould B. (2012). Tracing the Evolution of the Aggregate U.S Milk Supply Elasticity Using a Herd Dynamics Model. Agricultural Economics, 43 (5), 515-530. https://doi.org/10.1111/j.1574-0862.2012.00600.x
Bravo-Urueta, B, Wall, A, & Neubauer, F (2022). Dairy Farming from a Production Economics Perspective: An Overviews of the Literature. En S. Ray, R. Chambers, & S. Kumbhakar (eds.). Handbook of Production Economics. https://doi.org/10.1007/978-981-10-3455-8_31
Cadena, X., Reina, M., & Rivera, A. (2019). Precio regulado de la leche: ineficiencias, costos y alternativas [documentos de trabajo sobre desarrollo productivo]. Fedesarrollo. https://www.repository.fedesarrollo.org.co/handle/11445/3865
llo, O. (2019). Relaciones entre producción de leche cruda de vaca, precios y lluvias en los departamentos de Córdoba y Sucre, Colombia, 1997-2019. Predicción de la producción mensual 2016-2018 [documento de trabajo 2]. Observatorio de Precios y Costos Agrarios (OPCA). https://www.unicordoba.edu.co/wp-content/uploads/2023/05/Documento-de-trabajo-sobre-leche-cruda-de-vaca-1.pdf
Chavas, J. (2019): Rol of Risk and Uncertainty in Agriculture. En G. Cramer, C. Paudel, & A. Schmitz (eds.), The Routledge Handbook of Agricultural Economics (pp. 603-615). https://doi.org/10.4324/9781315623351
Choi, I. (2015). Almost all About Unit Roots: Fundations, Development, and Applications. Cambridge University Press https://doi.org/10.1017/CBO9781316157824
Departamento Administrativo Nacional de Estadística (DANE). (s.f.). Índice de precio al productor (IPP) históricos. Consultado el 15 de enero de 2022. https://www.dane.gov.co/index.php/estadisticas-por-tema/precios-y-costos/indice-de-precios-del-productor-ipp/ipp-historicos
Departamento Administrativo Nacional de Estadística (DANE). (2014). Censo Nacional Agropecuario.https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.dane.gov.co%2Ffiles%2FCensoAgropecuario%2Fentrega-definitiva%2FBoletin-10-produccion%2F10-Anexos.xls&wdOrigin=BROWSELINK
Departamento Administrativo Nacional de Estadística (DANE). (2018). Sistema de información de precios, SIPSA. https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/sistema-de-informacion-de-precios-sipsa/mayoristas-boletin-mensual-1/boletin-mensual-precios-de-leche-en-finca-historicos
(DANE). (2020). Encuestas Nacionales Agropecuarias. Series históricas. Serie histórica por departamentos pecuario. https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena
Engle, R. F., & Granger, C.W. (1987). Cointegration and Error Correction: Representation, Estimation and Testing. Econometrica, 55 (2), 251-276. https://www.jstor.org/stable/i332753
Espasa, A. (2007). Clive Granger: sus semillas en Econometría y su visión sobre la construcción de modelos empíricos en Economía. En C., Granger (ed.), Construcción de modelos empíricos en economía (pp.11-55). Marcial Pons.
Ferris, J. (2005). Agricultural Price and Commodity Market Analysis. Michigan State University.
Finger, R., Dalhaus, T., Allendor, J., & Hirsch, S. (2018). Determinants of Downside Risk Exposure of Dairy Farm. European Review of Agricultural Economcs 45 (4), 641-674. https://doi.org/10.1093/erae/jby012
Goodwin, J. (1994). Agricultural Prices Analysis and Forecasting. John Willey and Sons.
Haile, M., Kalkuhl, M. & von Braun, J. (2016). Worldwide Acreage and Yield Response to International Price Change and Volatility: A Dynamic Panel Data Analysis for Wheat, Rice, Corn, and Soybeans. En M. Kalkuhl, J. von Braun, & M. Torero (eds.), Food Prices Volatility and its Implications for Security and Policy (pp.139-165). Springer.
Hudson, D. (2007). Agricultural Markets and Prices. Blackwell Publishing.
Hutchins, J., & Hueth, B. (2022). Supply Response in Dairy Farming: Evidence from Montly, Animal-level Data. Journal of Agricultural and Resource Economics 47(1),38–56. https://doi.org/10.22004/ag.econ.310524
Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press. https://doi.org/10.1093/0198774508.001.0001
Ministerio de Agricultura y Desarrollo Rural. (MADR). (2012). Unidad de seguimiento de los precios de la leche cruda. http://uspleche.minagricultura.gov.co/documentos.html
Ministerio de Agricultura y Desarrollo Rural. (MADR). (2017). Informe técnico Misión 1.1. Estructura de la producción nacional y departamental de leche 2006 – 2015 y sistema de actualización mensual. https://www.queremosdatos.co/request/859/response/1846/attach/6/Anexo%20N%201%20Estructura%20de%20la%20producci%20n%20nacional%20y%20departamental%20de%20leche%202006%202015.pdf
Moschini, G., & Hennessy, D. (2001): Uncertainty, Risk Aversion, and Risk Management for Agricultural Producers. En B. Gardner, & G. Rausser (eds.), Handbook of Agricultural Economics, 1A. Agricultural production (pp. 87-153). Elsevier.
Mundlak, Y. (2001). Production and Supply. En B. Gardner & G. Rausser (eds), Handbook of Agricultural Economics, Volume 1A, (pp 3-85). Elsevier.
Nerlove, M. (1956). Estimates of The Elasticities of Supply of Selected Agricultural Commodities. Journal of Farm Economics 38, 496-509. https://doi.org/10.2307/1234389
Njuki, E., Bravo-Urueta, B., & Cabrera, BE (2020). Climatic Effects and Total Factor Productivity: Econometric Evidence for Winconsin Dairy Frams. European Review of Agricultural Economics, 47 (3), 1276-1301. https://doi.org/10.1093/erae/jbz046
Observatorio de Precios y Costos Agrarios de la zona noroccidental del caribe colombiano (OPCA). (2019). Índice de precio pagado al productor formalizado de leche cruda en Córdoba-Sucre. https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.unicordoba.edu.co%2Fwp-content%2Fuploads%2F2022%2F02%2Findice-y-base-leche-cord-suc.xls&wdOrigin=BROWSELINK
Perron, P. (1989). The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis. Econometrica, 57(6), 1361–1401. https://doi.org/10.2307/1913712
Pesaran M.H., & Shin, Y. (1999). An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis. En S. Strom (ed.), Econometric and Economic Theory in, The 20 th Century. The Ragnar Frisch Centennial Symposium (pp. 371-413). Cambridge University Press. http://dx.doi.org/10.1017/CCOL0521633230.011
Pesaran, M.H, Shin, Y., & Smith, R. (2001). Bounds Testing Approaches to the Analysis of Level Relationships. Journal of Applied Econometrics, 16 (3), 289–326. https://doi.org/10.1002/jae.616
Qi, L., Bravo-Urueta, B. E., & Cabrera, B. E. (2015), From Cold to Hot: Climatic Effects and Productivity in Wincosin Dairy Farm. Journal Dairy Science, 98 (12),8664-8677. https://doi.org/10.3168/jds.2015-9536
Shin, Y., Yu, B., & Greenwood-Nimmo, J. (2014). Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In, R.C. Sickles, and W. Horrace (eds). Festschrift in Honor of Peter Schmidt. Econometric Methods and Applications (pp. 281–314). Springer Science and Business.
Schultz, T. (1964). Transforming Traditional Agriculture. Yale University Press.
Tomek, W., & Robinson, K. (2005). Agricultural Product Prices. Cornell University Press.
Vogelsang, T. J., & Perron, P. (1998). Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time. International Economic Review, 39(4), 1073-1100. https://doi.org/10.2307/2527353
White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica, 48(4), 817–838. https://doi.org/10.2307/1912934
Zapata, H, Carter, H & Fomby, T. (2019). Econometrics for the Future. En G. Cramer, C. Paudel, & A. Schmitz (Eds). The Routledge Handbook of Agricultural Economics (pp. 445-466). London and New York: Routledge.
Zivot, E., & Donald W. K. Andrews. (1992). Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis. Journal of Business & Economic Statistics, 10(3), 251–270. https://doi.org/10.2307/1391541
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Se autoriza la reproducción sin ánimo de lucro de los materiales, citando la fuente.