Publicado

2024-12-09

Are Labour Markets Segmented in Developing Economies? A Clustering Approach for Colombian Workers

¿Son los mercados laborales segmentados en los países en desarrollo? una aproximación de clustering de los trabajadores colombianos

Os mercados de trabalho são segmentados nos países em desenvolvimento? Uma abordagem de agrupamento para trabalhadores colombianos

Palabras clave:

Labour informality, clustering methods, unsupervised machine learning, segmented market hypothesis (en)
informalidad laboral, métodos de clustering, algoritmos de aprendizaje no supervisado, hipotesis de mercados laborales segmentados (es)
informalidade do trabalho, métodos de agrupamento, algoritmos de aprendizado não supervisionado, hipótese de mercado de trabalho segmentado (pt)

Autores/as

Labour markets in developing economies are usually thought to be segmented. Differences in productivity, red tape, and high taxes create a divide between a modern and an excluded traditional sector. More recently, some scholars have challenged this view. In this article, we propose to test the segmented markets hypothesis using a clustering method applied to Colombian workers. Following Anderson et al. (1987) we hypothesize that if the first view prevails, the labour market has well-defined worker clusters that our empirical strategy could uncover. Using the FAMD-K-means algorithm we find three clusters: one comprises half the workforce, has workers with secondary education or vocational training, without labour contracts, and median earnings slightly above the minimum wage. The second group comprises 37% of the workforce, older workers with even lower earnings and educational achievement, with more precarious jobs. The last cluster comprises good quality jobs, mostly with indefinite labour contracts, with workers with university degrees and median earnings close to four times the minimum wage.  We statistically tested the differences between the informality definition and our method and found that the traditional measures have an important correlation with the clusters resulting from our model. 

Los mercados laborales en las economías en desarrollo suelen considerarse segmentados. Diferencias en productividad, la burocracia y los impuestos elevados crean una brecha entre un sector moderno y otro tradicional y excluido. Más recientemente, algunos académicos han desafiado esta perspectiva. En este artículo proponemos poner a prueba la hipótesis de mercados segmentados mediante un método de clustering aplicado a los trabajadores colombianos. Siguiendo a Anderson et al. (1987), sugerimos que, si prevalece la primera perspectiva, el mercado laboral tiene grupos de trabajadores bien definidos que nuestra estrategia empirica puede encontrar. Usando el algoritmo FAMD-K-means encontramos tres clusters: uno con la mitad de la fuerza laboral, con trabajadores con secundaria o formación profesional, sin contratos laborales y con ingresos medios ligeramente superiores al salario mínimo. El segundo grupo comprende el 37% de la fuerza laboral y está compuesto por trabajadores mayores con ingresos y logros educativos aún más bajos y empleos más precarios. El último grupo comprende empleos de buena calidad, en su mayoría con contratos laborales indefinidos, para trabajadores con títulos universitarios e ingresos medios cercanos a cuatro veces el salario mínimo. Testeamos estadísticamente diferencias entre la definición de informalidad y nuestro método, y encontramos que las medidas tradicionales tienen una correlación importante con los grupos encontrados.

Os mercados de trabalho nas economias em desenvolvimento são geralmente considerados segmentados. As diferenças de produtividade, a burocracia e os altos impostos criam uma lacuna entre um setor moderno e um setor tradicional e excluído. Mais recentemente, alguns acadêmicos questionaram essa perspectiva. Neste artigo, propomos testar a hipótese dos mercados segmentados usando um método de agrupamento aplicado aos trabalhadores colombianos. Seguindo Anderson et al. (1987), sugerimos que, se a primeira perspectiva prevalecer, o mercado de trabalho tem grupos bem definidos de trabalhadores que nossa estratégia empírica pode encontrar. Usando o algoritmo FAMD-K-means, encontramos três grupos: um com metade da força de trabalho, com trabalhadores com ensino médio ou treinamento vocacional, sem contratos de trabalho e com ganhos médios ligeiramente acima do salário mínimo. O segundo grupo compreende 37% da força de trabalho e é composto por trabalhadores mais velhos, com rendimentos e nível de escolaridade ainda mais baixos e empregos mais precários. O último grupo compreende empregos de boa qualidade, em sua maioria com contratos de trabalho permanentes, para trabalhadores com diploma universitário e ganhos médios próximos a quatro vezes o salário mínimo. Testamos estatisticamente as diferenças entre a definição de informalidade e nosso método, e descobrimos que as medidas tradicionais se correlacionam significativamente com os grupos encontrados.

Referencias

Aaberge, R., Dagsvik, J. K., & Strøm, S. (1995). Labor Supply Responses and Welfare Effects of tax Reforms. The Scandinavian Journal of Economics, 635-659. https://doi.org/10.2307/3440547

Aggarwal, C. C., & Reddy, C. K. (2014). Data Clustering: Algorithms and Applications. CRC Press.

Ahmad, A., & Hashmi, S. (2016). K-Harmonic Means Type Clustering Algorithm for Mixed Datasets. Applied Soft Computing, 48, 39-49. https://doi.org/10.1016/j.asoc.2016.06.019

Akay, Ö., & Yüksel, G. (2018). Clustering the Mixed Panel Dataset Using Gower's Distance and K-Prototypes Algorithms. Communications in Statistics-Simulation and Computation, 47(10), 3031-3041. https://doi.org/10.1080/03610918.2017.1367806

Anderson, K. H., Butler, J. S., & Sloan, F. A. (1987). Labor Market Segmentation: A Cluster Analysis of Job Groupings and Barriers to Entry. Southern Economic Journal, 53 (3), 571-590. https://doi.org/10.2307/1058755

Apitzsch, C., & Ryeng, J. (2020). Cluster Analysis of Mixed Data Types in Credit Risk: A study of clustering algorithms to detect customer segments [M.Sc. Thesis, Umea University]. https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-172594

Aschenbruck, R., & Szepannek, G. (2020). Cluster Validation for Mixed-Type Data. Archives of Data Science, Series A, 6(1), 02. https://publikationen.bibliothek.kit.edu/1000120412/79692380

Bock, H. H. (1987). On the Interface between Cluster Analysis, Principal Component Analysis, and Multidimensional Scaling. In Multivariate Statistical Modeling and Data Analysis: Proceedings of the Advanced Symposium on Multivariate Modeling and Data Analysis May 15–16, 1986 (pp. 17-34). Springer Netherlands.

Boston, T. D. (1990). Segmented Labor Markets: New Evidence from A Study of Four Race-Gender Groups. ILR Review, 44(1), 99-115. https://doi.org/10.2307/2523432

Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1-27. https://doi.org/10.1080/03610927408827101

Cao, F., Liang, J., & Bai, L. (2009). A New Initialization Method for Categorical Data Clustering. Expert Systems with Applications, 36(7), 10223-10228. https://doi.org/10.1016/j.eswa.2009.01.060

Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224-227. https://doi.org/10.1109/TPAMI.1979.4766909

Departamento Nacional de Estadística. (2019). Gran Encuesta Integrada de Hogares (GEIH) [data base] https://microdatos.dane.gov.co/index.php/catalog/599

de Soto, H. (1989). The Other Path: The Invisible Revolution in the Third World. Basic Books.

Farné, S. (1990). Segmentación laboral y ciclo económico. Una tentativa de estimación para el caso colombiano. Desarrollo y Sociedad, 1(25), 89-122. https://doi.org/10.13043/dys.25.3

Farne, S., Rodríguez D., & Carvajal, Y. (2013). La calidad del empleo en 23 ciudades colombianas [bulletin]. Boletín 14 Observatorio Laboral. Universidad Externado de Colombia. https://ideas.repec.org/p/col/000194/015977.html

Gittleman, M. B., & Howell, D. R. (1995). Changes in the Structure and Quality of Jobs in The United States: Effects by Race and Gender, 1973–1990. ILR Review, 48(3), 420-440. https://doi.org/10.1177/001979399504800303

Gong, X., van Soest, A., & Villagomez, E. (2004). Mobility in the Urban Labor Market: a Panel Data Analysis for Mexico. Economic Development and Cultural Change, 53(1), 1-36. https://doi.org/10.1086/423251

Gower, J. C. (1971). A General Coefficient of Similarity and Some of Its Properties. Biometrics, 857-871. https://doi.org/10.2307/2528823

Grané, A., & Sow-Barry, A. A. (2021). Visualizing Profiles of Large Datasets of Weighted and Mixed Data. Mathematics, 9(8), 891. https://doi.org/10.3390/math9080891

Harris, J. R., & Todaro, M. P. (1970). Migration, Unemployment and Development: A Two-Sector Analysis. The American Economic Review, 60(1), 126-142. https://www.jstor.org/stable/1807860

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edition. Springer.

Henley, A., Arabsheibani, G. R., & Carneiro, F. G. (2009). On Defining and Measuring the Informal Sector: Evidence from Brazil. World development, 37(5), 992-1003. https://doi.org/10.1016/j.worlddev.2008.09.011

Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (2015). Handbook of Cluster Analysis. CRC press.

Howell, A. (2011). Labor Market Segmentation in Urumqi, Xinjiang: Exposing Labor Market Segments and Testing the Relationship between Migration and Segmentation. Growth and Change, 42(2), 200–226. https://doi.org/10.1111/j.1468-2257.2011.00550.x

Hussmanns, R. (2004). Measuring the Informal Economy: From Employment in the Informal Sector to Informal Employment [Bureau of Statistics, International Labour Office Working Paper No. 53]. https://www.ilo.org/sites/default/files/wcmsp5/groups/public/@dgreports/@integration/documents/publication/wcms_079142.pdf

Huang, Z. (1997a). Clustering Large Data Sets with Mixed Numeric and Categorical Values. Proceedings of the First Pacific-Asia Conference. Singapore, World Scientific (pp. 21-34). https://www.scirp.org/reference/referencespapers?referenceid=1497127

Huang, Z. (1997b). A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining. Dmkd, 3(8), 34-39. https://www.semanticscholar.org/paper/A-Fast-Clustering-Algorithm-to-Cluster-Very-Large-Huang/a17726899429fc6c8a92779556efe43d9472b7b5

Huang, Z. (1998). Extensions to the K-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Mining and Knowledge Discovery, 2(3), 283-304. https://doi.org/10.1023/A:1009769707641

International Labour Office (ILO). (1972). Employment, Incomes and Equality: A Strategy for Increasing Productive Employment in Kenya. ILO.

Koren, O., Hallin, C. A., Perel, N., & Bendet, D. (2019). Enhancement of the K-Means Algorithm for Mixed Data in Big Data Platforms. In K. Arai, S. Kapoor & R. Bathia (eds.), Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys), Volume 1 (pp. 1025-1040). Springer International Publishing.

López-Roldán, P., & Fachelli, S. (2021). Measuring Labour Market Segmentation for a Comparative Analysis Among Countries. Social Indicators Research, 154(3), 857-892. https://doi.org/10.1007/s11205-020-02550-1

Magnac, T. (1991). Segmented or Competitive Labor Markets. Econometrica, 59(1), 165-187. https://doi.org/10.2307/2938245

Maloney, W. F. (1999). Does Informality Imply Segmentation in Urban Labor Markets? Evidence from Sectoral Transitions in Mexico. The World Bank Economic Review, 13(2), 275-302. https://www.jstor.org/stable/3990099

Martin, C., & Okolo, M. (2022). Heterogeneity in the UK Labour Market: Using Machine-learning To Test Macroeconomic Models. (Bath Economics Research Papers; No. 93/22). Department of Economics, University of Bath. https://researchportal.bath.ac.uk/en/publications/heterogeneity-in-the-uk-labour-market-using-machine-learning-to-t

Modha, D. S., & Spangler, W. S. (2003). Feature Weighting in K-means Clustering. Machine Learning, 52, 217-237. https://doi.org/10.1023/A:1024016609528

Neffa, J. C. (2008). Las teorías de la segmentación de los mercados de trabajo. In F. Eymard-Duvernay & Neffa (eds.), Teorías económicas sobre el mercado de trabajo (pp. 139-206). Fondo de Cultura Económica.

Neffa, J. C. (2023). Teorías de la segmentación del mercado de trabajo. RBEST: Revista Brasileira de Economia Social e do Trabalho, 5(00), e023012. https://doi.org/10.20396/rbest.v5i00.18343

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-Learn: Machine-learning in Python. Journal of Machine-Learning Research, 12, 2825–2830. https://dl.acm.org/doi/10.5555/1953048.2078195

Perry, G. E., Arias, O., Fajnzylber, P., Maloney, W. F., Mason, A., & Saavedra-Chanduvi, J. (2007). Informality: Exit and Exclusion. World Bank.

Pradhan, M., & van Soest, A. (1995). Formal and Informal Sector Employment in Urban Areas of Bolivia. Labour Economics, 2(3), 275-297. https://doi.org/10.1016/0927-5371(95)80032-S

Pradhan, M., & van Soest, A. (1997). Household Labor Supply in Urban Areas of Bolivia. Review of Economics and Statistics, 79(2), 300-310. https://doi.org/10.1162/003465397556656

Rodríguez, D. (2021) Microsimulation Analysis of Informal Labour Markets in Developing Countries (PhD thesis, University of Essex). http://repository.essex.ac.uk/id/eprint/29928

Rousseeuw, P. J. (1987). Silhouettes: A Graphical Aid to The Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7

Sousa-Poza, Alfonso. (2004). Is the Swiss Labor Market Segmented? An Analysis Using Alternative Approaches. Labour, 18(1), 131–161. https://doi.org/10.1111/j.1121-7081.2004.00261.x

van de Velden, M., Iodice D'Enza, A., & Markos, A. (2019). Distance‐Based Clustering of Mixed Data. Wiley Interdisciplinary Reviews: Computational Statistics, 11(3), e1456. https://doi.org/10.1002/wics.1456

Cómo citar

APA

Rodriguez Guerrero, D. A. y Quintero, J. E. (2024). Are Labour Markets Segmented in Developing Economies? A Clustering Approach for Colombian Workers. Ensayos de Economía, 34(65). https://revistas.unal.edu.co/index.php/ede/article/view/110808

ACM

[1]
Rodriguez Guerrero, D.A. y Quintero, J.E. 2024. Are Labour Markets Segmented in Developing Economies? A Clustering Approach for Colombian Workers. Ensayos de Economía. 34, 65 (nov. 2024).

ACS

(1)
Rodriguez Guerrero, D. A.; Quintero, J. E. Are Labour Markets Segmented in Developing Economies? A Clustering Approach for Colombian Workers. Ens. Econ. 2024, 34.

ABNT

RODRIGUEZ GUERRERO, D. A.; QUINTERO, J. E. Are Labour Markets Segmented in Developing Economies? A Clustering Approach for Colombian Workers. Ensayos de Economía, [S. l.], v. 34, n. 65, 2024. Disponível em: https://revistas.unal.edu.co/index.php/ede/article/view/110808. Acesso em: 20 ene. 2025.

Chicago

Rodriguez Guerrero, David Arturo, y Jorge Eliecer Quintero. 2024. «Are Labour Markets Segmented in Developing Economies? A Clustering Approach for Colombian Workers». Ensayos De Economía 34 (65). https://revistas.unal.edu.co/index.php/ede/article/view/110808.

Harvard

Rodriguez Guerrero, D. A. y Quintero, J. E. (2024) «Are Labour Markets Segmented in Developing Economies? A Clustering Approach for Colombian Workers», Ensayos de Economía, 34(65). Disponible en: https://revistas.unal.edu.co/index.php/ede/article/view/110808 (Accedido: 20 enero 2025).

IEEE

[1]
D. A. Rodriguez Guerrero y J. E. Quintero, «Are Labour Markets Segmented in Developing Economies? A Clustering Approach for Colombian Workers», Ens. Econ., vol. 34, n.º 65, nov. 2024.

MLA

Rodriguez Guerrero, D. A., y J. E. Quintero. «Are Labour Markets Segmented in Developing Economies? A Clustering Approach for Colombian Workers». Ensayos de Economía, vol. 34, n.º 65, noviembre de 2024, https://revistas.unal.edu.co/index.php/ede/article/view/110808.

Turabian

Rodriguez Guerrero, David Arturo, y Jorge Eliecer Quintero. «Are Labour Markets Segmented in Developing Economies? A Clustering Approach for Colombian Workers». Ensayos de Economía 34, no. 65 (noviembre 1, 2024). Accedido enero 20, 2025. https://revistas.unal.edu.co/index.php/ede/article/view/110808.

Vancouver

1.
Rodriguez Guerrero DA, Quintero JE. Are Labour Markets Segmented in Developing Economies? A Clustering Approach for Colombian Workers. Ens. Econ. [Internet]. 1 de noviembre de 2024 [citado 20 de enero de 2025];34(65). Disponible en: https://revistas.unal.edu.co/index.php/ede/article/view/110808

Descargar cita

Visitas a la página del resumen del artículo

139

Descargas

Los datos de descargas todavía no están disponibles.