Published

2023-11-10

Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry

Génesis y evolución de pegmatitas en el oriente colombiano mediante química mineral

DOI:

https://doi.org/10.15446/esrj.v27n3.102843

Keywords:

Pegmatite, magmatic fractionation, strategic minerals, mineral chemistry (en)
Pegmatita, fraccionamiento magmático, minerales estratégicos, química mineral (es)

Downloads

Additional Files

Authors

  • Estefany Andrea Mora-Galindo Universidad Nacional de Colombia
  • Juan Carlos Molano Mendoza Universidad Nacional de Colombia
  • Milton Julián Morales Peña Universidad Nacional de Colombia

 

Pegmatites and granitic intrusives from eastern Colombia, belonging to the Guainía department, were studied to determine the generating magma type, as well as to assess the degree of magmatic fractionation and its relationship with the presence of Nb-Ta-bearing minerals (strategic minerals). To that end, 31 rock samples were studied; EPMA electronic microprobe analyses were conducted on apatite, biotite, garnet, microcline, muscovite, and tourmaline. The results from biotite, garnet, and tourmaline suggest that these rocks originated from a Fe-rich peraluminous melt. 

Moreover, content variation of Ba in microcline, Na in muscovite, Fe-Mg in biotite, and Mn-Sr in apatite, allowed the proposal of a magmatic evolutionary line for these rocks. Nb-Ta-bearing samples were present in the most fractionated rocks where tourmaline and garnet occurred, and thus, were proposed as possible indicators of strategic minerals.

Se estudiaron pegmatitas e intrusivos graníticos del este de Colombia pertenecientes al departamento del Guainía para determinar el tipo de magma generador, su grado de fraccionamiento magmático y su relación con la presencia de minerales portadores de Nb-Ta (minerales estratégicos). Con este propósito, se estudiaron 31 muestras de rocas y se realizaron análisis con microsonda electrónica EPMA en apatito, biotita, granate, microclina, muscovita y turmalina. Los resultados obtenidos a partir de biotita, granate y turmalina sugieren que dichas rocas se generaron a partir de un magma peraluminoso rico en Fe.

Además, la variación del contenido de Ba en la microclina, Na en la muscovita, Fe-Mg en la biotita, y Mn-Sr en el apatito permitió proponer una línea evolutiva magmática para estas rocas. Las muestras portadoras de Nb-Ta estaban presentes en las rocas más fraccionadas, donde se encontraron turmalina y granate, por lo que se propusieron como posibles indicadores de minerales estratégicos.

References

Aarden, H., & Davidson, M. (1978). Minerales de estaño, niobio, tántalo y titanio en la zona del Cano Aguamena, Estado Bolívar, analizados con microsonda de electrones. Congreso Geológico Venezolano, 5th, Memoria, 3. Caracas, pp. 919–940.

Abad-Ortega, M. M., Hach-Ali, P. F., Martin-Ramos, J. D., & Ortega-Huertas, M. (1993). The feldspars of the Sierra Albarrana granitic pegmatites, Cordoba, Spain. The Canadian Mineralogist, 31, 185–202.

Alfonso, P., Melgarejo, J. C., Yusta, I., & Velasco, F. (2003). Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap De Creus Field, Catalonia, Spain. The Canadian Mineralogist, 41, 103–116. https://doi.org/10.2113/gscanmin.41.1.103 DOI: https://doi.org/10.2113/gscanmin.41.1.103

Allan, B. D., & Clarke, D. B. (1981). Occurrence and origin of garnets in the South Mountain batholith, Nova Scotia. The Canadian Mineralogist, 19, 19–24. DOI:10.1139/cjes-2016-0106 DOI: https://doi.org/10.1139/cjes-2016-0106

Andersen, T., & Neumann, E.-R. (2001). Fluid inclusions in mantle xenoliths. Lithos 55, 301–320. https://doi.org/10.1016/S0024-4937(00)00049-9 DOI: https://doi.org/10.1016/S0024-4937(00)00049-9

Bangerter, G. (1985). Estudio sobre la Petrogenesis de las Mineralizaciones de Niobio, Tantalo y Estario en el Granito Rapakivi de Parguaza y sus Diferenciaciones. Primer Simposio Amazónico, Puerto Ayacucho, Venezuela, pp. 175–185.

Barron, C. (1966). Notes on the Stratigraphy of Central British of Guyana. Conferencia Geologica Interguianas, 6. Departamento Nacional da Produqzo Mineral, Anais, BelCm, Pard, Brazil, pp. 121–126.

Bayona-Valderrama, J. P. (2018). Análisis de espectros Raman en óxidos provenientes de áreas pegmatíticas en el oriente colombiano. [Unpublished manuscript].

Belousova, E. A., Griffin, W. L., O’Reilly, S. Y., & Fisher, N. I. (2002). Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationships to host rock type. Journal of Geochemical Exploration, 76, 45–69. https://doi.org/10.1016/S0375-6742(02)00204-2 DOI: https://doi.org/10.1016/S0375-6742(02)00204-2

Belousova, E. A., Walters, S., Griffin, W. L., & O’Reilly, S. Y. (2001). Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, Northwestern Queensland. Australian Journal of Earth Sciences, 48, 603–619. https://doi.org/10.1046/j.1440-0952.2001.00879.x DOI: https://doi.org/10.1046/j.1440-0952.2001.00879.x

Bonilla, A., Cramer, T., De Grave, J., Alessio, B., Glorie, S., & Kroonenberg, S. (2021). The NW Amazonian Craton in Guainía and Vaupés departments, Colombia: Transition between orogenic to anorogenic environments during the Paleo-Mesoproterozoic. Precambrian Research, 360, 106223. https://doi.org/https://doi.org/10.1016/j.precamres.2021.106223 DOI: https://doi.org/10.1016/j.precamres.2021.106223

Bonilla-Pérez, A., Frantz, J. C., Charao-Marques, J., Cramer, T., Franco-Victoria, J. A., Mulocher, E., & Amaya-Perea, Z. (2013). Petrografía, geoquímica y geocronología del Granito de Parguaza en Colombia. Boletín de Geología, 35.

Bonilla, A., Franco-Victoria, J. A., Cramer, T., Grave, J. de, Nachtergaele, S., Cogné, N., & Piraquive, A. (2023). The NW Amazonian Craton in Guainía and Vaupés departments, Colombia: Evidence of a Mesoproterozoic thermal event from Apatite LA-ICP-MS U-Pb geochronology and its relation to magmatic ore deposits. Precambrian Research, 395(July), Manuscript Number: PRECAM-D-23-00131. https://doi.org/10.1016/j.precamres.2023.107148 DOI: https://doi.org/10.1016/j.precamres.2023.107148

Brito Neves, B. B. (2011). The Paleoproterozoic in the South-American continent: Diversity in the geologic time. Journal of South American Earth Sciences, 32, 270–286. https://doi.org/10.1016/j.jsames.2011.02.004 DOI: https://doi.org/10.1016/j.jsames.2011.02.004

Cardona Alarcón, A. C. (2018). Caracterización microtermométrica de fluidos mineralizantes en diques pegmatíticos en el oriente colombiano. [Unpublished Manuscript] Bogotá, Colombia.

Černý, P. (1994). Evolution of Feldspars in Granitic Pegmatites. In: Parsons, I. (eds) Feldspars and their Reactions. NATO ASI Series, vol. 421. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1106-5_13 DOI: https://doi.org/10.1007/978-94-011-1106-5_13

Černý, P., Meintzer, R. E., & Anderson, A. J. (1985). Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms. The Canadian Mineralogist, 23, 381–421.

Charry, C. J., Molano, J. C., Santacruz, L. and Sepulveda, J. (2023). Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia. Earth Sciences Research Journal, 27(1), 11–25. https://doi.org/10.15446/esrj.v27n1.102683 DOI: https://doi.org/10.15446/esrj.v27n1.102683

Cordani, U. G., Sato, K., Sproessner, W., & Fernandes, F. S. (2016). U-Pb zircon ages of rocks from the Amazonas Territory of Colombia and their bearing on the tectonic history of the NW sector of the Amazonian Craton. Brazilian Journal of Geology, https://doi.org/10.1590/2317-4889201620150012 DOI: https://doi.org/10.1590/2317-4889201620150012

Franco, J. A., Cramer, T., Bonilla, A., Castañeda A. J., Poujol, M., & Amaya, Z. (2021). Mineralogía y geocronología de rutilo-(Nb,Ta) relacionado a casiterita y columbita-tantalita provenientes de rocas Mesoproterozoicas del Cratón Amazónico cerca de Cachicamo, Colombia. Boletín de Geología, 43(1), 99-126. https://doi.org/10.18273/revbol.v43n1-2021005 DOI: https://doi.org/10.18273/revbol.v43n1-2021005

Franco, J. A., Cramer, T., Chaves, A. de O., Horn, H. A., & Poujol, M. (2021). Geochronology of monazite related to REE, Nb–Ta and U–Th bearing minerals from Mesoproterozoic anorogenic magmatism in the E-Colombian Amazonian Craton: Links to mantle plume activity in the Columbia (Nuna) supercontinent. Journal of South American Earth Sciences, 109, 103228. https://doi.org/https://doi.org/10.1016/j.jsames.2021.103228 DOI: https://doi.org/10.1016/j.jsames.2021.103228

Gaudette, H. E., Mendoza, V., Hurley, P. M., & Fairbairn, H. W. (1978). Geology and age of the Parguaza rapakivi granite, Venezuela. Bulletin of the Geological Society of America, 89, 1335–1340. https://doi.org/10.1130/0016-7606(1978)89<1335:GAAOTP>2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1978)89<1335:GAAOTP>2.0.CO;2

Gomes, M. E. P., & Neiva, A. M. R. (2005). Geochemistry of granitoids and their minerals from Rebordelo – Agrochao area, northern Portugal. Lithos 81, 235–254. https://doi.org/10.1016/j.lithos.2004.11.001 DOI: https://doi.org/10.1016/j.lithos.2004.11.001

Gonzalez, C. F., & Pinto, H. (1990). Petrografia del Granito de Parguaza y otras Rocas Precambricas en el Oriente de Colombia. Geología Colombiana, 17, 107–121.

Green, T. H. (1977). Garnet in silicic liquids and its possible use as a P-T indicator. Contributions to Mineralogy and Petrology, 65, 59–67. https://doi.org/10.1007/BF00373571 DOI: https://doi.org/10.1007/BF00373571

Guerrero, N., Santacruz, L., Dorado, C., Rodriguez, B., Morales, M., Cano, N., Martínez, L., Zárate, A., Molano, J., Peña, G., & Perez, A. (2017). Caracterización de pegmatitas al sureste del departamento de Guainía, Colombia. XVI Congreso Colombiano de Geología, III Simposio de Exploradores, Santa Marta, Colombia, pp. 1267–1272.

Hall, A. (1965). The Origin of Accessory Garnet in the Donegal Granite. Mineralogical Magazine, 35, 628–633. https://doi.org/10.1180/minmag.1965.035.272.06 DOI: https://doi.org/10.1180/minmag.1965.035.272.06

Harrison, T. N. (1988). Magmatic Garnets in the Cairngorm Granite, Scotland. Mineralogical Magazine, 52, 659–667. https://doi.org/10.1180/minmag.1988.052.368.10 DOI: https://doi.org/10.1180/minmag.1988.052.368.10

Henry, D. J., & Guidotti, C. V. (1985). Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70, 1–15.

Kontak, D. J., & Martin, R. F. (1997). Alkali feldspar in the peraluminous South Mountain Batholith, Nova Scotia: Trace-element data. The Canadian Mineralogist, 35, 959–977.

Krippner, A., Meinhold, G., Morton, A. C., & Von Eynatten, H. (2014). Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks. Sedimentary Geology, 306. https://doi.org/10.1016/j.sedgeo.2014.03.004 DOI: https://doi.org/10.1016/j.sedgeo.2014.03.004

Linnen, R. L., Van Lichtervelde, M., & Černý, P. (2012). Granitic pegmatites as sources of strategic metals. Elements, 8, 275–280. https://doi.org/10.2113/gselements.8.4.275 DOI: https://doi.org/10.2113/gselements.8.4.275

London, D., Cerny, P., Loomis, J. L., & Pan, J. J. (1990). Phosphorus in Alkali Feldspars of Rare-Element Granitic Pegmatites. The Canadian Mineralogist, 28, 771–786.

López, J., Khurama, S., Bernal, L., & Cuellar, M. (2007). El Complejo Mitú: Una Nueva Perspectiva. Memorias XI Congreso Colombiano de Geología, 1–16.

López, J. A., & Cramer, T. (2014). Ambiente Geológico Del Complejo Mitú Y Tantalio En El Territorio Colombiano Geological Setting of Mitu Complex and Perspective of Mineral Occurrences of Niobium and Tantalum in the Colombian Territory. Geología Colombiana, 37, 75–93.

Manning, D. A. C. (1983). Chemical variation in garnets from aplites and pegmatites, peninsular Thailand. Mineralogical Magazine, 47. https://doi.org/10.1180/minmag.1983.047.344.10 DOI: https://doi.org/10.1180/minmag.1983.047.344.10

Miller, C. F., & Stoddard, E. F. (1981). The Role of Manganese in the Paragenesis of Magmatic Garnet: An Example from the Old Woman-Piute Range, California. The Journal of Geology, 89, 233–246. https://doi.org/10.1086/628582 DOI: https://doi.org/10.1086/628582

Morales, M., Santacruz, L., Molano, J., Dorado, C., Zárate, A., Rodriguez, B., Guerrero, N., Cano, N., Martínez, L., Perez, A., & Peña, G. (2017). Consideraciones sobre la fuente de Nb y Ta en el departamento del Guainía: un abordaje desde el fluido y la química mineral. XVI Congreso Colombiano de Geología, III Simposio de Exploradores, pp. 1052–1057.

Nachit, H. (1985). Composition chimique des biotites et typologie magmatique des granitoids. Comptes Rendus de l’Académie des Sciences, 301, 813–818.

Pan, Y., & Fleet, M. E. (2002). Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors. Reviews in Mineralogy and Geochemistry, 48, 13–49. https://doi.org/10.2138/rmg.2002.48.2 DOI: https://doi.org/10.2138/rmg.2002.48.2

Piccoli, P. M., & Candela, P. A. (2002). Apatite in Igneous Systems. Reviews in Mineralogy and Geochemistry, 48, 255–292. https://doi.org/10.2138/rmg.2002.48.6 DOI: https://doi.org/10.2138/rmg.2002.48.6

Priem, H. N. A., Andriessen, P. A. M., Boelrijk, N. A. I. M., De Boorder, H., Hebeda, E. H., Huguett, A., Verdurmen, E. A. T., & Verschure, R. H. (1982). Geochronology of the Precambrian in the Amazonas Region of Southeastern Colombia (Western Guiana Shield). Geologie en Mijnbouw, 61, 229–242.

René, M., & Stelling, J. (2007). Garnet-bearing granite from the Třebíč pluton, Bohemian Massif (Czech Republic). Mineralogy and Petrology, 91, 55–69. https://doi.org/10.1007/s00710-007-0188-2 DOI: https://doi.org/10.1007/s00710-007-0188-2

Roda Robles, E., Pesquera Peréz, A., & Velasco Roldán, F. (1995). Micas of the muscovite-lepidolite series from the fregeneda pegmatites (Salamanca, Spain). Mineralogy and Petrology, 55, 145–157. https://doi.org/10.1007/BF01162585 DOI: https://doi.org/10.1007/BF01162585

Rodríguez, G., Sepúlveda, J., Ramírez, C., Ortiz, F., Ramos, K., Bermúdez, J., & Sierra, M. (2011). Cartografía Geológica y Exploración Geoquímica de la Plancha 443 Mitú. 163.

Rodríguez, S., & Pérez, H. (1982). Nb, Ta, and Sn mineralization related to granitic magmatism in western Bolivar State, Venezuela: International Association on the Genesis of Ore Deposits. Symposium, 6th, Tbilisi, U.S.S.R. p. 10p.

Santos, J. O. S., Rizzotto, G. J., Potter, P. E., McNaughton, N. J., Matos, R. S., Hartmann, L. A., Chemale, F., & Quadros, M. E. S. (2008). Age and autochthonous evolution of the Sunsás Orogen in West Amazon Craton based on mapping and U-Pb geochronology. Precambrian Research, 165, 120–152. https://doi.org/10.1016/j.precamres.2008.06.009 DOI: https://doi.org/10.1016/j.precamres.2008.06.009

Sha, L. K., & Chappell, B. W. (1999). Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63, 3861–3881. https://doi.org/10.1016/S0016-7037(99)00210-0 DOI: https://doi.org/10.1016/S0016-7037(99)00210-0

Shearer, C. K., Papike, J. J., & Laul, J. C. (1985). Chemistry of potassium feldspars from three zoned pegmatites, Black Hills, South Dakota: Implications concerning pegmatite evolution. Geochimica et Cosmochimica Acta, 49, 663–673. https://doi.org/10.1016/0016-7037(85)90161-9 DOI: https://doi.org/10.1016/0016-7037(85)90161-9

Stone, M. (1988). The Significance of Almandine Garnets in the Lundy and Dartmoor Granites. Mineralogical Magazine, 52, 651–658. https://doi.org/10.1180/minmag.1988.052.368.09 DOI: https://doi.org/10.1180/minmag.1988.052.368.09

Stussi, J., & Cuney, M. (1996). Nature of Biotites from Alkaline, Caloalkaline and Peraluminous Magmas by Abdel-Fattah M. Abdel-Rahman: A Comment. Journal of Petroleum, 37, 1025–1029. https://doi.org/10.1093/petrology/37.5.1025 DOI: https://doi.org/10.1093/petrology/37.5.1025

Tassinari, C. C. G., & Macambira, M. J. B. (1999). Geochronological provinces of the Amazonian Craton. Episodes 22, 174–182. https://doi.org/10.18814/epiiugs/1999/v22i3/004 DOI: https://doi.org/10.18814/epiiugs/1999/v22i3/004

Teiber, H., Marks, M. A. W., Arzamastsev, A. A., Wenzel, T., & Markl, G. (2015). Compositional variation in apatite from various host rocks: clues with regards to source composition and crystallization conditions. Neues Jahrbuch für Mineralogie - Abhandlungen - Journal of Mineralogy and Geochemistry, 192, 151–167. doi:10.1127/njma/2015/0277 DOI: https://doi.org/10.1127/njma/2015/0277

Vennum, W. R., & Meyer, C. E. (1979). Plutonic garnets from the Werner Batholith, Lassiter Coast, Antarctic Peninsula. American Mineralogist, 64, 268–273.

White, A. J. R., & Chappell, B. W. (1977). Ultrametamorphism and granitoid genesis. Tectonophysics 43, 7–22. https://doi.org/10.1016/0040-1951(77)90003-8 DOI: https://doi.org/10.1016/0040-1951(77)90003-8

Winter, J. D. (2001). An Introduction to Igneous and Metamorphic Petrology. Prentice-Hall Inc.

Zárate, A., Morales, M., Santacruz, L., Guerrero, N., Molano, J., Dorado, C., Peña, G., Perez, A., Amaya, Z., Franco, J., Rodríguez, B., Cano, N., Martínez, L., & Molano, J. (2017). Caracterización de granos de ilmenorutilo en concentrados de batea utilizando diferentes métodos analíticos. Sureste del departamento de Guainía, Colombia. XVI Congreso Colombiano de Geología, III Simposio de Exploradores, pp. 1058–1064.

Zen, E. (1988). Phase relations of peraluminous granitic rocks and their petrogenetic implications. Annual Review of Earth and Planetary Sciences, 21–51. DOI: https://doi.org/10.1146/annurev.ea.16.050188.000321

How to Cite

APA

Mora-Galindo, E. A., Molano Mendoza, J. C. and Morales Peña, M. J. (2023). Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry. Earth Sciences Research Journal, 27(3), 259–271. https://doi.org/10.15446/esrj.v27n3.102843

ACM

[1]
Mora-Galindo, E.A., Molano Mendoza, J.C. and Morales Peña, M.J. 2023. Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry. Earth Sciences Research Journal. 27, 3 (Nov. 2023), 259–271. DOI:https://doi.org/10.15446/esrj.v27n3.102843.

ACS

(1)
Mora-Galindo, E. A.; Molano Mendoza, J. C.; Morales Peña, M. J. Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry. Earth sci. res. j. 2023, 27, 259-271.

ABNT

MORA-GALINDO, E. A.; MOLANO MENDOZA, J. C.; MORALES PEÑA, M. J. Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry. Earth Sciences Research Journal, [S. l.], v. 27, n. 3, p. 259–271, 2023. DOI: 10.15446/esrj.v27n3.102843. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/102843. Acesso em: 9 aug. 2024.

Chicago

Mora-Galindo, Estefany Andrea, Juan Carlos Molano Mendoza, and Milton Julián Morales Peña. 2023. “Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry”. Earth Sciences Research Journal 27 (3):259-71. https://doi.org/10.15446/esrj.v27n3.102843.

Harvard

Mora-Galindo, E. A., Molano Mendoza, J. C. and Morales Peña, M. J. (2023) “Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry”, Earth Sciences Research Journal, 27(3), pp. 259–271. doi: 10.15446/esrj.v27n3.102843.

IEEE

[1]
E. A. Mora-Galindo, J. C. Molano Mendoza, and M. J. Morales Peña, “Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry”, Earth sci. res. j., vol. 27, no. 3, pp. 259–271, Nov. 2023.

MLA

Mora-Galindo, E. A., J. C. Molano Mendoza, and M. J. Morales Peña. “Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry”. Earth Sciences Research Journal, vol. 27, no. 3, Nov. 2023, pp. 259-71, doi:10.15446/esrj.v27n3.102843.

Turabian

Mora-Galindo, Estefany Andrea, Juan Carlos Molano Mendoza, and Milton Julián Morales Peña. “Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry”. Earth Sciences Research Journal 27, no. 3 (November 10, 2023): 259–271. Accessed August 9, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/102843.

Vancouver

1.
Mora-Galindo EA, Molano Mendoza JC, Morales Peña MJ. Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry. Earth sci. res. j. [Internet]. 2023 Nov. 10 [cited 2024 Aug. 9];27(3):259-71. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/102843

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Harold Buitrago, Florian Neumann, Juan Contreras, Carlos A. Vargas. (2024). The thermal structure of the Colombian lithosphere: A regional and basin-scale analysis. Tectonophysics, 885, p.230413. https://doi.org/10.1016/j.tecto.2024.230413.

Dimensions

PlumX

Article abstract page views

428

Downloads

Download data is not yet available.