Published

2024-02-28

Geoelectrical investigation to delineate potential aquifers in Shahroud, Iran

Investigación geoeléctrica para delinear potenciales acuíferos en Shahroud, Irán

DOI:

https://doi.org/10.15446/esrj.v27n4.107251

Keywords:

Electrical Resistivity Method, inversion., groundwater, GIS (en)
Método de resistividad eléctrica, Inversión, Exploración de aguas subterráneas, Sistema de Información Geográfica (es)

Downloads

Authors

One of the world's most pressing needs today is access to groundwater. Although hydrological parameters can generally be estimated using underground studies, these methods are time-consuming and expensive. By taking the direct relationship of these parameters with electrical resistivity and measuring it with a cheaper and faster geoelectric method, a qualitative estimate of these parameters will be obtained. The electrical resistivity method is one of the most widely used methods to probe aquifers. The main objective of this paper is to show how, by interpreting and modeling the data of this exploratory method along with other geological information, the hydrogeological modeling of groundwater reservoirs can be done, and then, with an informed vision, the wells can be drilled for exploitation. For this purpose, the electrical resistivity data at 189 points and 9 profiles in the Shahroud region with Schlumberger array, after reviewing and making some modifications, were subjected to one-dimensional inverse modeling. According to the peripheral vision, the electrode distance was considered to be 50 meters and the length of the profiles is different. The longest profile was 1000 meter and related to profile 3. Then, using the results of modeling along with other available information, the hydrogeological models of the area were prepared in the form of iso-resistivity contour map and interpreted in terms of resistivity and thickness of subsurface layer using computer software Geographic Information System (GIS). Similarly, the thickness map of the aquifer unit (s) was also prepared to classify the good and poor zones. Using the prepared models and also considering the direction and piezometric of the groundwater flow inside the aquifer, suitable places were identified and suggested for future exploitation. 

Una de las necesidades más apremiantes en el mundo es el acceso al agua subterránea. Si bien algunos parámetros hidrológicos se pueden estimar generalmente con estudios subterráneos, estos métodos suelen ser costosos en tiempo y en dinero. Una estimación cualitativa de estos parámetros se puede obtener al tomar la relación directa de estos parámetros con la resistividad eléctrica y medir con un método geoeléctrico más barato y más rápido. El método de resistividad eléctrica es uno de los más usados para hacer pruebas en acuíferos. El objetivo principal de este trabajo es mostrar cómo se puede hacer, por interpretación y modelado de la información de este método exploratorio junto con otra información geológica, el modelado de reservorios de agua subterránea y luego, con una visión informada, la perforación de pozos para su explotación. Para este fin la información de resistividad eléctrica de 189 puntos y de 9 perfiles en la región de Shahroud con la configuración de Schlumberger, después de revisarla y hacer algunas modificaciones, fue objeto de un modelado unidimensional inverso. De acuerdo con la visión periférica, la distancia de los electrodos se consideró en 50 metros mientras que la longitud de los perfiles es diferente. El perfil 3 fue el más largo, con unos 1000 metros. Luego, al combinar los resultados del modelado con otra información disponible se prepararon los modelos hidrogeológicos en la forma de un mapa de contornos de iso-resistividad y se interpretaron en términos de resistividad y espesor de la capa de la subsuperficie con el software Sistema de Información Geográfica. De manera similar se preparó el mapa de espesor de las unidades acuíferas para clasificar las zonas más y las menos profundas. Al usar los modelos preparados y también considerar la dirección y piezometría del flujo de las aguas subterráneas al interior del acuífero se identificaron los lugares más adecuados y se sugirieron para futuras explotaciones. 

References

Abdul Nassir, S. S., Loke, M. H., Lee, C. Y., & Nawawi, N. M. (2000). Salt-water intrusion mapping by geoelectrical imaging surveys. Geophysical Prospecting, 48(4), 647-661. https://doi.org/10.1046/j.1365-2478.2000.00209.x DOI: https://doi.org/10.1046/j.1365-2478.2000.00209.x

Al-Fares, W. (2016). Using Vertical Electrical Soundings for Characterizing Hydrogeological and Tectonic Settings in Deir El-Adas Area, Yarmouk Basin, Syria. Acta Geophysica, 64(3), 610-632. https://doi.org/10.1515/acgeo-2016-0025 DOI: https://doi.org/10.1515/acgeo-2016-0025

Ahmed, A., Ghosh, P. K., Hasan, M., & Rahman, A. (2020). Surface and groundwater quality assessment and identification of hydrochemical characteristics of a south-western coastal area of Bangladesh. Environmental Monitoring and Assessment, 192(4). https://doi.org/10.1007/s10661-020-8227-0 DOI: https://doi.org/10.1007/s10661-020-8227-0

Alile, O. M., Ujuanbi, O., & Evbuomwan, I. A. (2011). Geoelectric investigation of groundwater in Obaretin – Iyanomon locality, Edo state, Nigeria. Journal of Geology and Mining Research, 3(1), 13-20.

Al-Khafaji, W. M. S. (2013). The Role of (Geoelectric and Hydrogeologic) Parameters in the Evaluation of Groundwater reservoir at South of Jabal Sinjar area. Iraqi Journal of Science, 54(3), 628-637.

Anomohanran, O. (2013). Geophysical Investigation of Groundwater Potential in Ukelegbe, Nigeria. Journal of Applied Sciences, 13(1), 119-125. https://doi.org/10.3923/jas.2013.119.125 DOI: https://doi.org/10.3923/jas.2013.119.125

Archie, G. E. (1942). The Electrical Resistivity Logs as and Aid in determining some Reservoir characteristics. Petroleum Technology, Techical Report 1422. American Instrument of Mining and Metallurgical Engineering, 146, 54-62. DOI: https://doi.org/10.2118/942054-G

Arshad, M., Sikandar, P., Baksh, A., & Rana, T. (2007). The use of vertical electrical sounding resistivity method for the location of low salinity groundwater for irrigation in Chaj and Rachna Doabs. Environmental Earth Sciences, 60, 1113–1129. https://doi.org/10.1007/s12665-009-0255-6

Arunbose, S., Srinivas, Y., & Rajkumar, S. (2021). Efficacy of hydrological investigation in Karumeniyar river basin, Southern Tamil Nadu, India using vertical electrical sounding technique: A case study. MethodsX, 8, 101215. https://doi.org/10.1016/j.mex.2021.101215 DOI: https://doi.org/10.1016/j.mex.2021.101215

Asfahani, J. (2007). Electrical earth resistivity surveying for delineating the characteristics of ground water in a semi-arid region in the Khanasser Valley, Geology Department, Atomic Energy Commission, Syria. Hydrological Processes, 21(8), 1085-1097. https://doi.org/10.1002/hyp.6290 DOI: https://doi.org/10.1002/hyp.6290

Asokhia, M. B., Azi, S. O. & Ujuanbi, O. (2000). A simple computer iteration technique for the interpretation of vertical electrical sounding. Journal of the Nigerian Association of Mathematical Physics, 4, 269–280.

Atkins, E. R., & Smith, G. H. (1961). The significance of Particle Shape in Formation Factor-porosity relationships. The Journal of Petroleum Technology, 13, 285-291. DOI: https://doi.org/10.2118/1560-G-PA

Apparao, A., & Rao, T. G. (1974). Depth of investigation in resistivity methods using linear electrodes. Geophysical Prospecting, 22, 211-223. DOI: https://doi.org/10.1111/j.1365-2478.1974.tb00080.x

Barker, R. D. (1989). Depth of investigation of collinear symmetrical four electrode arrays. Geophysics, 54, 1031-1037. DOI: https://doi.org/10.1190/1.1442728

Carroll, D. (1962). Rainwater as a chemical agent of geologic processes – A review. United States Geological Survey Water, Supply paper (1535-G).

Chinh, P. D. (2000). Electrical properties of sedimentary rocks having interconnected water-saturated pore spaces. Geophysics, 65, 1093-1097. DOI: https://doi.org/10.1190/1.1444802

Coker, J. O. (2012). Vertical electrical sounding (VES) methods to delineate potential groundwater aquifers in Akobo area, Ibadan, South-western, Nigeria. Journal of Geology and Mining Research, 4(2), 35-42. https://doi.org/10.5897/JGMR11.014 DOI: https://doi.org/10.5897/JGMR11.014

Corwin, D. L., & Yemoto, K. (2017). Salinity: Electrical Conductivity and Total Dissolved Solids. Methods of Soil Analysis, 2. https://doi.org/10.2136/msa2015.0039 DOI: https://doi.org/10.2136/msa2015.0039

Darayan, S., Liu, C., Shen, L. C., & Shattuck, D. (1998). Measurement of electrical properties of contaminated soil. Geophysical prospecting, 46(5), 477-488. DOI: https://doi.org/10.1046/j.1365-2478.1998.00104.x

Dimitrev, V. I., & Beitollahi, A. (1998). The solution of 2-D VES inverse problems in spectral domain. Journal of Mathematics and Computer Science, Faculty of numerical computing and cybernetics, Moscow University.

El-Waheidi, M., Merlanti, F., & Pavan, M. (1992). Geoelectrical resistivity survey of the central part of Azraq basin (Jordan) for identifying saltwater/freshwater interface. Journal of Applied Geophysics, 29(2), 125-133. https://doi.org/10.1016/0926-9851(92)90003-4 DOI: https://doi.org/10.1016/0926-9851(92)90003-4

El Makrini, S., Boualoul, M., Mamouch, Y., El Makrini, H., Allaoui, A., Randazzo, G., Roubil, A., El Hafyani, M., Lanza, S., & Muzirafuti, A. (2022). Vertical Electrical Sounding (VES) Technique to Map Potential Aquifers of the Guigou Plain (Middle Atlas, Morocco): Hydrogeological Implications. Applied Sciences, 12, 12829. https://doi.org/10.3390/app122412829 DOI: https://doi.org/10.3390/app122412829

Emenike, E. A. (2001). Geophysical exploration for groundwater in a sedimentary environment. Global Journal of Pure and Applied Sciences, 7(1), 97-102. DOI: 10.4314/gjpas.v7i1.16212 DOI: https://doi.org/10.4314/gjpas.v7i1.16212

Evien, H. M. (1938). Depth factors and resolving power in electrical measurement. Geophysics, 3, 75-78. DOI: https://doi.org/10.1190/1.1439485

Fajana, A. O. (2020). Groundwater aquifer potential using electrical resistivity method and porosity calculation: a case study. NRIAG Journal of Astronomy and Geophysics, 9(1), 168-175. https://doi.org/10.1080/20909977.2020.1728955 DOI: https://doi.org/10.1080/20909977.2020.1728955

Gulraiz, A., & Hasan, M. (2016). Determination of aquifer parameters using geoelectrical sounding and pumping test data in Khanewal District, Pakistan. Open Geosci, 8, 630–638. https://doi.org/10.1515/geo-2016-0071 DOI: https://doi.org/10.1515/geo-2016-0071

Hassan, E., Rai, J. K., & Anekwe, U. O. (2017). Geoelectrical Survey of Ground Water in Some Parts of Kebbi State Nigeria, a Case Study of Federal polytechnic Bye-Pass Birnin Kebbi and Magoro Primary Health Center Fakai Local Government. Geosciences, 7(5), 141-149. https://doi.org/10.5923/j.geo.20170705.01

Kazakis, N., Vargemezis, G., & Voudouris, K. S. (2016). Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods. Science of the Total Environment, 550, 742–750. https://doi.org/10.1016/j.scitotenv.2016.01.133 DOI: https://doi.org/10.1016/j.scitotenv.2016.01.133

Keller, G. V., & Frischknecht, F. C. (1966). Electrical Methods in Geophysical prospecting. Oxford, Pergamon Press, 517pp.

Koch, K., Wenninger, J., Uhlenbrook, S., & Bonell, M. (2009). Joint interpretation of hydrological and geophysical data: electrical resistivity tomography results from a process hydrological research site in the Black Forest Mountains, Germany. Hydrological processes, 23(10), 1501-1513. DOI: https://doi.org/10.1002/hyp.7275

Lashkaripour, G. R., & Nakhaei, M. (2005). Geoelectrical investigation for the assessment of groundwater conditions: a case study. Annals of Geophysics, 48, 937–944.

Lateef, T. A. (2012). Geophysical Investigation For Groundwater Using Electrical Resistivity Method - A Case Study Of Annunciation Grammar School, Ikere Lga, Ekiti State, South-Western Nigeria. IOSR Journal of Applied Physics (IOSRJAP), 2(1), 01-06. DOI: https://doi.org/10.9790/4861-0210106

Lesmes, D. P., & Friedman, S. P. (2005). Relationship between the electrical and hydrogeological properties of rocks and soils. Hydrogeophysics, Springer, Netherlands, 87-128. DOI: https://doi.org/10.1007/1-4020-3102-5_4

Loke, M. H. (1999). A Practical Guide to 2D and 3D Surveys. Electrical Imaging Surveys for Environmental and Engineering Studies, 8-10.

Mallam, A., & Ajayi, C. O. (2000). Resistivity method for groundwater investigation in sedimentary area. Nigerian Journal of Physics, 12, 34–38.

Mazáč, O., Kelly, W., & Landa, I. (1985). A hydrogeophysical model for relations between electrical and hydraulic properties of aquifers. Journal of Hydrology, 79(1-2), 1-19. https://doi.org/10.1016/0022-1694(85)90178-7 DOI: https://doi.org/10.1016/0022-1694(85)90178-7

Oseji, J. O., Asokhia, M. B., & Okolie, E. C. (2006). Determination of groundwater potential in obiaruku and environs using surface geoelectric sounding. The Environmentalist, 26(4), 301-308. https://doi.org/10.1007/s10669-006-0159-x DOI: https://doi.org/10.1007/s10669-006-0159-x

Oseji, J. O., Atakpo, E., & Okolie, E. C. (2005). Geoelectric Investigation of the Aquifer Characteristics and Groundwater Potential in Kwale, Delta State, Nigeria. Journal of Applied Science and Environmental Management, 9(1), 157–1600.

Reynolds, J.M. (1997). An Introduction to applied and environmental geophysics. 2nd edition, Willy-Blackwell, 710 pp.

Rusydi, A. F. (2018). Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conf. Ser.: Earth Environ. Sci. 118 012019 DOI: https://doi.org/10.1088/1755-1315/118/1/012019

Surinaidu, L., & Bacon, C. G. D. (2023). Electrical Resistivity and Other Geophysical Methods for Improved Modelling of Groundwater Flow. Cambridge Scholars Publishing. ISBN (10): 1-5275-0138-8. ISBN (13): 978-1-5275-0138-6

Schlumberger, C. (1912). Premières expériences. Carte des courbes équipotentielles, tracées au courant continu Val-Richer (Calvados). Août-Septembre 1912. Ref 4717, Musée de Crèvecoeur en Auge, Calvados, France

Sikandar, P., Bakhsh, A., Arshad, M. & Rana, T. (2010). The use of vertical electrical sounding resistivity method for the location of low salinity groundwater for irrigation in Chaj and Rachna Doabs. Environmental Earth Sciences, 60, 1113–1129. https://doi.org/10.1007/s12665-009-0255-6 DOI: https://doi.org/10.1007/s12665-009-0255-6

Sharifi, F., Arab-Amiri, A., Kamkar-Rouhani, A., Yousefi, M., & Tokhmech, B. (2015). A New GIS based Application of Sequential Technique to Prospect Karstic Groundwater using Remotely Sensed and Geoelectrical Methods in Karstified Tepal Area, Shahrood, Iran. International Journal of Mining and Geo-Engineering, 49(1), 113-130. DOI: 10.22059/IJMGE.2015.54635

Sharifi, F., Arab-Amiri, A., R., & Kamkar-Rouhani, A. (2014). Karstic water exploration using the Schlumberger VES and dipole–dipole resistivity profiling surveys in the Tepal area, west of Shahrood, Iran. Journal of Mining & Environment, 5(1), 1-12.

Soupios, P. M., Kouli, M., Valliantos, A. V., & Stavroulakis, G. (2007). Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete-Greece). Journal of Hydrology, 338, 122-131. DOI: https://doi.org/10.1016/j.jhydrol.2007.02.028

Tahmasbi Nejad, H., & Lashkaripour, G. H. (2010). Geoelectrical Exploration for Groundwater in Shooroo Basin, Southwest of Zahedan, Iran. The 1 st International Applied Geological Congress, Department of Geology, Islamic Azad University, Mashad, Iran, April, 26-28.

Telford, W. M., Geldart, L. P., & Sheriff, R. E. (2012). Applied geophysics. 2nd ed. Cambridge University Press, Cambridge, 770 pp.

Todd, D. K. (1980). Groundwater Hydrology. New York, John Wiley, 552 pp.

Van Dam, J. C., & Meulenkamp, J. J. (1967). Some results of the geoelectrical resistivity method in groundwater investigations in the Netherlands. Geophysical Prospecting, 15, 92-115. DOI: https://doi.org/10.1111/j.1365-2478.1967.tb01775.x

Wenner, F. (1912)- The four-terminal conductor and the Thomson bridge, U.S. Bur. Standards Bull., 8, 559-610. DOI: https://doi.org/10.6028/bulletin.197

Yoon, G. L. & Park, J. B. (2001). Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils. Journal of Hazardous Materials, 84(2–3), 147–161. DOI: https://doi.org/10.1016/S0304-3894(01)00197-2

How to Cite

APA

Zarif Mahdizadeh, E., Beitollahi , A. and Zarif Mahdizadeh, S. (2024). Geoelectrical investigation to delineate potential aquifers in Shahroud, Iran. Earth Sciences Research Journal, 27(4), 403–414. https://doi.org/10.15446/esrj.v27n4.107251

ACM

[1]
Zarif Mahdizadeh, E., Beitollahi , A. and Zarif Mahdizadeh, S. 2024. Geoelectrical investigation to delineate potential aquifers in Shahroud, Iran. Earth Sciences Research Journal. 27, 4 (Feb. 2024), 403–414. DOI:https://doi.org/10.15446/esrj.v27n4.107251.

ACS

(1)
Zarif Mahdizadeh, E.; Beitollahi , A.; Zarif Mahdizadeh, S. Geoelectrical investigation to delineate potential aquifers in Shahroud, Iran. Earth sci. res. j. 2024, 27, 403-414.

ABNT

ZARIF MAHDIZADEH, E.; BEITOLLAHI , A.; ZARIF MAHDIZADEH, S. Geoelectrical investigation to delineate potential aquifers in Shahroud, Iran. Earth Sciences Research Journal, [S. l.], v. 27, n. 4, p. 403–414, 2024. DOI: 10.15446/esrj.v27n4.107251. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/107251. Acesso em: 17 jul. 2024.

Chicago

Zarif Mahdizadeh, Eilnaz, Ali Beitollahi, and Sanaz Zarif Mahdizadeh. 2024. “Geoelectrical investigation to delineate potential aquifers in Shahroud, Iran”. Earth Sciences Research Journal 27 (4):403-14. https://doi.org/10.15446/esrj.v27n4.107251.

Harvard

Zarif Mahdizadeh, E., Beitollahi , A. and Zarif Mahdizadeh, S. (2024) “Geoelectrical investigation to delineate potential aquifers in Shahroud, Iran”, Earth Sciences Research Journal, 27(4), pp. 403–414. doi: 10.15446/esrj.v27n4.107251.

IEEE

[1]
E. Zarif Mahdizadeh, A. Beitollahi, and S. Zarif Mahdizadeh, “Geoelectrical investigation to delineate potential aquifers in Shahroud, Iran”, Earth sci. res. j., vol. 27, no. 4, pp. 403–414, Feb. 2024.

MLA

Zarif Mahdizadeh, E., A. Beitollahi, and S. Zarif Mahdizadeh. “Geoelectrical investigation to delineate potential aquifers in Shahroud, Iran”. Earth Sciences Research Journal, vol. 27, no. 4, Feb. 2024, pp. 403-14, doi:10.15446/esrj.v27n4.107251.

Turabian

Zarif Mahdizadeh, Eilnaz, Ali Beitollahi, and Sanaz Zarif Mahdizadeh. “Geoelectrical investigation to delineate potential aquifers in Shahroud, Iran”. Earth Sciences Research Journal 27, no. 4 (February 28, 2024): 403–414. Accessed July 17, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/107251.

Vancouver

1.
Zarif Mahdizadeh E, Beitollahi A, Zarif Mahdizadeh S. Geoelectrical investigation to delineate potential aquifers in Shahroud, Iran. Earth sci. res. j. [Internet]. 2024 Feb. 28 [cited 2024 Jul. 17];27(4):403-14. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/107251

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

83

Downloads

Download data is not yet available.