Published

2025-10-29

Landslide Research in CIS countries: Remote Sensing, Hazards, and Research Trends

Investigación sobre deslizamientos de tierra en la Comunidad de Estados Independientes: teledetección, riesgos y tendencias de investigación

DOI:

https://doi.org/10.15446/esrj.v29n3.118866

Keywords:

Landslide, Remote Sensing, CIS countries, Research trend, Citations, Review (en)
Deslizamientos de tierra, detección remota, países de la Comunidad de Estados Independientes, temas tendencia de investigación, citaciones, revisión (es)

Downloads

Authors

Landslides are among the major environmental hazards, with large-scale socio-economic and environmental impacts, that jeopardize socio-economic well-being in the countries of the Commonwealth of Independent States (CIS). Landslides are caused by the interaction of several complex factors, including local or regional geology, geomorphology, topography, and seismic motions. The factors that can trigger landslides are classified into three categories: external, internal, and anthropogenic (human-induced). It has been identified that geophysical, geotechnical, and statistical approaches are commonly used in landslide research in the CIS states. The goal of this study is to review published articles on landslides in CIS countries from 1966 to 2022. In line with this goal, we have collected (using Scopus database), reviewed, and analyzed 944 papers published during 1966–2022. Bibliometric analysis revealed that all articles were published in two languages: English and Russian. The highest publication numbers came from the Russian Federation, followed by Kyrgyzstan, Kazakhstan, Germany, the United States, Japan, Uzbekistan, Belgium, China, and Italy. Furthermore, our research shows that the largest number of papers were research articles, comprising 559 (59%) of 944, followed by 282 documents of conference proceedings, 75 book chapters, and 15 review papers. In contrast, there were only 1% of other document types (e.g., Book 6, Editorial 3, Note 2, Erratum 1, Short Survey, and Retracted, each with 1). The scientometric analysis revealed that international research on landslides is necessary to enhance scientific exchange on this topic.

Los deslizamientos de tierra son uno de los principales riesgos ambientales, con impactos socioeconómicos a gran escala, que ponen en peligro el bienestar socioeconómico de los países de la Comunidad de Estados Independientes (CEI). Los deslizamientos son causados por la interacción de varios factores complejos, que incluyen la geología local y regional, la geomorfología, la topografía y los movimientos sísmicos. Los factores que pueden desencadenar los deslizamientos se clasifican en tres categorías: externos, internos y antropogénicos (inducidos por los seres humanos). Se ha identificado que los abordajes desde la geofísica, la geotecnia y la estadística se usan comunmente en la investigación de los deslizamientos de tierra en los estados de la CEI. La meta de este estudio es revisar artículos publicados sobre deslizamientos en los paises de la CEI entre 1966 y 2022. En línea con este objetivo, hemos recopilado (utilizando la base de datos Scopus), revisado y analizado 944 artículos publicados durante el período de estudio. El análisis bibliométrico reveló que todos los artículos se publicaron en dos idiomas: inglés y ruso. Los números más altos de publicaciones vinieron de la Federación Rusa, seguida de Kirguistán, Kazajistán, Alemania, Estados Unidos, Japón, Uzbekistán, Bélgica, China e Italia. Además, nuestra investigación muestra que la mayor cantidad de artículos fueron artículos de investigación, que comprenden 559 (59%) de 944, seguidos de 282 documentos de actas de conferencias, 75 capítulos de libros y 15 artículos de revisión. En contraste, hubo solo un 1% de otros tipos de documentos (por ejemplo, Libro 6, Editorial 3, Nota 2, Fe de erratas 1, Encuesta corta 1 y Retractado 1). El análisis cienciométrico reveló que la investigación internacional sobre deslizamientos de tierra es necesaria para mejorar el intercambio científico sobre este tema.

References

Abdikairov, B., Juliev, M., & Kholmurodova, M. (2024). Analyses and assessment of soil salinity modeling: review of papers from Scopus database. Journal of Geology, Geography and Geoecology, 33(4), 647–661. https://doi.org/10.15421/112459

Alcántara-Ayala, I., & Garnica-Peña, R. J. (2023). Landslide Warning Systems in Low-And Lower-Middle-Income Countries: Future Challenges and Societal Impact. In K. Sassa, K. Konagai, B. Tiwari, Ž. Arbanas, & S. Sassa (Eds.), Progress in Landslide Research and Technology, Volume 1 Issue 1, 2022 (pp. 137–147). Springer International Publishing. https://doi.org/10.1007/978-3-031-16898-7_9

Basharat, M., Riaz, M. T., Jan, M. Q., Xu, C., & Riaz, S. (2021). A review of landslides related to the 2005 Kashmir Earthquake: Implication and future challenges. Natural Hazards, 108(1), 1–30. https://doi.org/10.1007/s11069-021-04688-8

Cancino, C., Merigó, J. M., Coronado, F., Dessouky, Y., & Dessouky, M. (2017). Forty years of Computers & Industrial Engineering: A bibliometric analysis. Computers & Industrial Engineering, 113, 614–629. https://doi.org/10.1016/j.cie.2017.08.033

Chakraborty, R., & Dey, A. (2019). Effect of Toe Cutting on Hillslope Stability. In A. I.V. & V. B. Maji (Eds.), Geotechnical Applications (Vol. 13, pp. 191–198). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-0368-5_21

Cheskidov, V. V., Lipina, A. V., & Melnichenko, I. A. (2018). Integrated monitoring of engineering structures in mining. Eurasian Mining, 2018(2), 18–21. https://doi.org/10.17580/em.2018.02.05

De Sousa, F. D. B. (2021). Management of plastic waste: A bibliometric mapping and analysis. Waste Management & Research: The Journal for a Sustainable Circular Economy, 39(5), 664–678. https://doi.org/10.1177/0734242X21992422

Djanpulatova, Z. A., Juliev, M. K., Abdikairov, B. E., Kholmurodova, M. D., Turdalieva, S. R., & Khadjieva, Z. B. (2025). Ecosystem services in achieving SDGs: A bibliometric overview 2015-2024. Applied Ecology and Environmental Research, 23(4), 6223–6246. https://doi.org/10.15666/aeer/2304_62236246

Durán-Sánchez, A., Álvarez-García, J., González-Vázquez, E., & Del Río-Rama, M. de la C. (2020). Wastewater Management: Bibliometric Analysis of Scientific Literature. Water, 12(11), 2963. https://doi.org/10.3390/w12112963

Evans, S. G., Roberts, N. J., Ischuk, A., Delaney, K. B., Morozova, G. S., & Tutubalina, O. (2009). Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life. Engineering Geology, 109(3–4), 195–212. https://doi.org/10.1016/j.enggeo.2009.08.007

Fang, K., Tang, H., Li, C., Su, X., An, P., & Sun, S. (2023). Centrifuge modelling of landslides and landslide hazard mitigation: A review. Geoscience Frontiers, 14(1), 101493. https://doi.org/10.1016/j.gsf.2022.101493

Fata, Y. A., Hendrayanto, Murtilaksono, K., & Erizal. (2021). The role of hydro-mechanical vegetation in slope stability: A review. IOP Conference Series: Earth and Environmental Science, 794(1), 012041. https://doi.org/10.1088/1755-1315/794/1/012041

Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3–4), 85–98. https://doi.org/10.1016/j.enggeo.2008.03.022

Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018

Gariano, S. L., Petrucci, O., Rianna, G., Santini, M., & Guzzetti, F. (2018). Impacts of past and future land changes on landslides in southern Italy. Regional Environmental Change, 18(2), 437–449. https://doi.org/10.1007/s10113-017-1210-9

Gracheva, R., & Urushadze, T. (2011). Landslides in a rural mountainous region: damaging and resource-forming impacts (South Caucasus, Georgia). Geography, Environment, Sustainability (pp. 59–68). https://doi.org/10.24057/2071-9388-2011-4-1-59-68

Hossain, S., Al Noor Tushar, M., Islam, S., Razzak, Md. Z. A., Alve, A., & Junayed, T. R. (2025). Investigating the role of rock weathering and clay mineralogy in landslide occurrences within the exposed Tertiary Formations in Rangamati area. Geoenvironmental Disasters, 12(1), 20. https://doi.org/10.1186/s40677-025-00324-w

Hunter, B. (1995). The Statesman’s Year-Book 1995-96 (1st ed. 1995). London: Palgrave Macmillan UK. https://doi.org/10.1057/9780230271241

Juliev, M., Abdikairov, B., Kholmurodova, M., Djanpulatova, Z., Mingboyeva, M., & Makhmudova, M. (2024). Mapping the Landscape: A Bibliometric Analysis of Digital Education Research. E3S Web of Conferences, 590, 03009. https://doi.org/10.1051/e3sconf/202459003009

Juliev, M., Kholmurodova, M., Abdikairov, B., & Abuduwaili, J. (2024). A comprehensive review of soil erosion research in Central Asian countries (1993-2022) based on the Scopus database. Soil and Water Research, 19(4), 244–256. https://doi.org/10.17221/82/2024-SWR

Kannazarova, Z., Juliev, M., Abuduwaili, J., Muratov, A., & Bekchanov, F. (2024). Drainage in irrigated agriculture: Bibliometric analysis for the period of 2017–2021. Agricultural Water Management, 305, 109118. https://doi.org/10.1016/j.agwat.2024.109118

Kannazarova, Z., Juliev, M., Muratov, A., & Abuduwaili, J. (2024). Groundwater in the commonwealth of independent states: A bibliometric analysis of scopus-based papers from 1972 to 2023, emphasizing the significance of drainage. Groundwater for Sustainable Development, 25, 101083. https://doi.org/10.1016/j.gsd.2024.101083

Karakhanian, A. S., Trifonov, V. G., Philip, H., Avagyan, A., Hessami, K., Jamali, F., Salih Bayraktutan, M., Bagdassarian, H., Arakelian, S., Davtian, V., & Adilkhanyan, A. (2004). Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran. Tectonophysics, 380(3–4), 189–219. https://doi.org/10.1016/j.tecto.2003.09.020

Kharismalatri, H. S., Ishikawa, Y., Gomi, T., Sidle, R. C., & Shiraki, K. (2018). Evaluating factors for controlling sediment connectivity of landslide materials: A flume experiment. Water (Switzerland), 11(1). https://doi.org/10.3390/w11010017

Khasanov, S., Juliev, M., Uzbekov, U., Aslanov, I., Agzamova, I., Normatova, N., Islamov, S., Goziev, G., Khodjaeva, S., & Holov, N. (2021a). Landslides in Central Asia: A review of papers published in 2000–2020 with a particular focus on the importance of GIS and remote sensing techniques. GeoScape, 15(2), 134–145. https://doi.org/10.2478/geosc-2021-0011

Khasanov, S., Juliev, M., Uzbekov, U., Aslanov, I., Agzamova, I., Normatova, N., Islamov, S., Goziev, G., Khodjaeva, S., & Holov, N. (2021b). Landslides in Central Asia: A review of papers published in 2000–2020 with a particular focus on the importance of GIS and remote sensing techniques. GeoScape, 15(2), 134–145. https://doi.org/10.2478/geosc-2021-0011

Kubicek, P. (2009). The Commonwealth of Independent States: an example of failed regionalism? Review of International Studies, 35(S1), 237–256. https://doi.org/10.1017/S026021050900850X

Li, J., Zhang, B., & Sui, B. (2021). Stability Analysis of Rock Slope with Multilayer Weak Interlayer. Advances in Civil Engineering, 2021(1), 1409240. https://doi.org/10.1155/2021/1409240

Maassen, S. (2016). Bibliometric Analysis of Research on Wastewater Irrigation During 1991-2014: Bibliometric Analysis of Research on Wastewater Irrigation (1991-2014). Irrigation and Drainage, 65(5), 644–653. https://doi.org/10.1002/ird.1981

Mamadjanova, G., & Leckebusch, G. C. (2022). Assessment of mudflow risk in Uzbekistan using CMIP5 models. Weather and Climate Extremes, 35, 100403. https://doi.org/10.1016/j.wace.2021.100403

Mardanov, I., Yusifova, S., & Sumqayit State University. (2017). The geo system analysis of exogenesis of high-mountainous landscapes of Azerbaijanian part of great caucasus. Sustainable Development of Mountain Territories, 9(1), 32–39. https://doi.org/10.21177/1998-4502-2017-7-9-32-39

Mardieva, D., Bakiyeva, G., Kannazarova, Z., & Saidova, Z. (2024). A Bibliometric Review: Interventions for Enhancing Speaking Skills in non-English-Speaking Contexts. XLinguae, 17(4), 195–224. https://doi.org/10.18355/XL.2024.17.04.12

Marín-Rodríguez, N. J., Vega, J., Zanabria, O. B., González-Ruiz, J. D., & Botero, S. (2024). Towards an understanding of landslide risk assessment and its economic losses: A scientometric analysis. Landslides. https://doi.org/10.1007/s10346-024-02272-2

McAdoo, B. G., Quak, M., Gnyawali, K. R., Adhikari, B. R., Devkota, S., Rajbhandari, P. L., & Sudmeier-Rieux, K. (2018). Roads and landslides in Nepal: how development affects environmental risk. Natural Hazards and Earth System Sciences, 18(12), 3203–3210. https://doi.org/10.5194/nhess-18-3203-2018

Medeu, A. R., Blagoveshchenskii, V. P., & Zhdanov, V. V. (2018). Gravitational Seismodislocations in Mountainous regions of Southeastern Kazakhstan. Geography and Natural Resources, 39(1), 79–87. https://doi.org/10.1134/S1875372818010110

Mei, Y., Ma, T., & Su, R. (2021). How marketized is China’s natural gas industry? A bibliometric analysis. Journal of Cleaner Production, 306, 127289. https://doi.org/10.1016/j.jclepro.2021.127289

Mertens, K., Jacobs, L., Maes, J., Kabaseke, C., Maertens, M., Poesen, J., et al. (2016). The direct impact of landslides on household income in tropical regions: A case study from the Rwenzori Mountains in Uganda. Science of The Total Environment, 550, 1032–1043. https://doi.org/10.1016/j.scitotenv.2016.01.171

Montalván-Burbano, N., Pérez-Valls, M., & Plaza-Úbeda, J. (2020). Analysis of scientific production on organizational innovation. Cogent Business & Management, 7(1), 1745043. https://doi.org/10.1080/23311975.2020.1745043

Mukanov, T., Umetaliev, A., Mambetkulova, A., Kaiyrbekov, A., Goncharova, I., Veres, P., Tamás, P., & Kannazarova, Z. (2024). New trends in sustainable supply chains: Insights from recent studies. Advanced Logistic Systems - Theory and Practice, 18(2), 52–60. https://doi.org/10.32971/als.2024.017

Nepop, R. K., & Agatova, A. R. (2017). Earthquake Induced Landslides in Russian Altai: Absolute Dating Applying Tree-Ring and Radiocarbon Analysis. In M. Mikoš, N. Casagli, Y. Yin, & K. Sassa (Eds.), Advancing Culture of Living with Landslides (pp. 141–148). Springer International Publishing. https://doi.org/10.1007/978-3-319-53485-5_15

Niu, R., Wu, X., Yao, D., Peng, L., Ai, L., & Peng, J. (2014). Susceptibility Assessment of Landslides Triggered by the Lushan Earthquake, April 20, 2013, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9), 3979–3992. https://doi.org/10.1109/JSTARS.2014.2308553

Okalp, K., & Akgün, H. (2022). Landslide susceptibility assessment in medium-scale: Case studies from the major drainage basins of Turkey. Environmental Earth Sciences, 81(8), 244. https://doi.org/10.1007/s12665-022-10355-3

Osipov, V. I., Rumyantseva, N. A., & Eremina, O. N. (2019). Living with risk of natural disasters. Russian Journal of Earth Sciences, 19(6). https://doi.org/10.2205/2019ES000673

Pacheco Quevedo, R., Velastegui-Montoya, A., Montalván-Burbano, N., Morante-Carballo, F., Korup, O., & Daleles Rennó, C. (2023). Land use and land cover as a conditioning factor in landslide susceptibility: A literature review. Landslides. https://doi.org/10.1007/s10346-022-02020-4

Palgrave Macmillan. (2016). Commonwealth of Independent States (CIS). In Palgrave Macmillan (Ed.), The Statesman’s Yearbook (pp. 47–47). London: Palgrave Macmillan UK. https://doi.org/10.1007/978-1-349-68398-7_30

Pelinovsky, E., & Poplavsky, A. (1996). Simplified model of tsunami generation by submarine landslides. Physics and Chemistry of the Earth, 21(1–2), 13–17. https://doi.org/10.1016/S0079-1946(97)00003-7

Pizzi, S., Caputo, A., Corvino, A., & Venturelli, A. (2020). Management research and the UN sustainable development goals (SDGs): A bibliometric investigation and systematic review. Journal of Cleaner Production, 276, 124033. https://doi.org/10.1016/j.jclepro.2020.124033

Ponomareva, V. V., Melekestsev, I. V., & Dirksen, O. V. (2006). Sector collapses and large landslides on Late Pleistocene–Holocene volcanoes in Kamchatka, Russia. Journal of Volcanology and Geothermal Research, 158(1–2), 117–138. https://doi.org/10.1016/j.jvolgeores.2006.04.016

Potapov, V. P., Oparin, V. N., Mikov, L. S., & Popov, S. E. (2022). Information Technologies in Problems of Nonlinear Geomechanics. Part I: Earth Remote Sensing Data and Lineament Analysis of Deformation Wave Processes. Journal of Mining Science, 58(3), 486–502. https://doi.org/10.1134/S1062739122030164

Razakova, M., Kuzmin, A., Fedorov, I., Yergaliev, R., & Ainakulov, Z. (2020). Methods of calculating landslide volume using remote sensing data. E3S Web of Conferences, 149, 02009. https://doi.org/10.1051/e3sconf/202014902009

Regmi, A. D., Yoshida, K., Dhital, M. R., & Devkota, K. (2013). Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal. Landslides, 10(1), 1–13. https://doi.org/10.1007/s10346-011-0311-7

Romanenko, S., Larionova, E., Maldibaev, U., Aydaraliev, B., & Ordobaev, B. (2020). Risk management technique of landslides activation with account of seismic activity factor in Kyrgyzstan. Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov, 331(10), 155–163. https://doi.org/10.18799/24131830/2020/10/2865

Rosi, A., Frodella, W., Nocentini, N., Caleca, F., Havenith, H. B., Strom, A., et al. (2023). Comprehensive landslide susceptibility map of Central Asia. Natural Hazards and Earth System Sciences, 23(6), 2229–2250. https://doi.org/10.5194/nhess-23-2229-2023

Samir Kumar Jalal. (2019). Co-authorship and co-occurrences analysis using BibliometrixR package: A case study of India and Bangladesh. Annals of Library and Information Studies, 2(66), 57–64.

Saponaro, A., Pilz, M., Wieland, M., Bindi, D., Moldobekov, B., & Parolai, S. (2015). Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan. Bulletin of Engineering Geology and the Environment, 74(4), 1117–1136. https://doi.org/10.1007/s10064-014-0709-2

Sawassi, A., & Khadra, R. (2021). Bibliometric Network Analysis of “Water Systems’ Adaptation to Climate Change Uncertainties”: Concepts, Approaches, Gaps, and Opportunities. Sustainability, 13(12), 6738. https://doi.org/10.3390/su13126738

Schlögel, R., Torgoev, I., De Marneffe, C., & Havenith, H.-B. (2011). Evidence of a changing size-frequency distribution of landslides in the Kyrgyz Tien Shan, Central Asia: Landslide activity in the kyrgyz Tien shan. Earth Surface Processes and Landforms, 36(12), 1658–1669. https://doi.org/10.1002/esp.2184

Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R., & Schaub, T. (2001). The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal, 38(5), 995–1024. https://doi.org/10.1139/t01-031

Sekarlangit, N., Fathani, T. F., & Wilopo, W. (2022). Landslide Susceptibility Mapping of Menoreh Mountain Using Logistic Regression. Journal of Applied Geology, 7(1), 51. https://doi.org/10.22146/jag.72067

Sharapov, R., & Varlamov, A. (2015). Using neural networks in remote sensing monitoring of exogenous processes (Y. Wang, X. Jiang, & D. Zhang, Eds.; p. 94432P). https://doi.org/10.1117/12.2178879

Shuvalova, R. A., Burlutsky, S. B., Glazunov, V. V., & Zhdanov, S. V. (2021). Landslide Slope Stability Estimation by The Geotechnical and Geophysical Data. In Engineering and Mining Geophysics 2021 (pp. 1–11). Online: European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.202152022

Simonyan, V. V., & Volkov, V. I. (2021). Assessment of risk and safety of structures on slope areas according to geodetic monitoring data. Geodezia i Kartografia, 976(10), 42–51. https://doi.org/10.22389/0016-7126-2021-976-10-42-51

Smirnova, I. O., & Kirsanov, A. A. (2021). The state of the art and prospects of remote sensing data application in the study of exogenous geological processes by the example of landslides. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 18(3), 26–48. https://doi.org/10.21046/2070-7401-2021-18-3-26-48

Stein, S., Dugan, B., Gonzales Zenteno, E., Ticona, J., & Minaya, A. (2024). Slope stabilization through groundwater management with limited hydrogeological data: a case study from Majes, southern Peru. Environmental Earth Sciences, 83(8), 231. https://doi.org/10.1007/s12665-024-11509-1

Sudani, P., Patil, K. A., & Kolekar, Y. A. (2023). Historical Development of Landslide Early Warning System (LEWS): A Review. In K. Muthukkumaran, B. Umashankar, & N. K. Pitchumani (Eds.), Earth Retaining Structures and Stability Analysis (Vol. 303, pp. 263–277). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-7245-4_24

Tanaguzova, M., Nanovsky, S., & Orazgaliyev, S. (2023). Assessing the Effect of Joining the World Trade Organization on Trade Performance: A Study of CIS Countries. Economies, 11(9), 236. https://doi.org/10.3390/economies11090236

Teshebaeva, K., Roessner, S., Echtler, H., Motagh, M., Wetzel, H.-U., & Molodbekov, B. (2015). ALOS/PALSAR InSAR time-series analysis for detecting very slow-moving landslides in Southern Kyrgyzstan. Remote Sensing, 7(7), 8973–8994. https://doi.org/10.3390/rs70708973

Thien, B. B., Phuong, V. T., & Huong, D. T. V. (2022). Detection and assessment of the spatio-temporal land use/cover change in the Thai Binh province of Vietnam’s Red River delta using remote sensing and GIS. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-022-01636-8

Thirugnanam, H. (2023). Deep Learning in Landslide Studies: A Review. In I. Alcántara-Ayala, Ž. Arbanas, D. Huntley, K. Konagai, M. Mikoš, K. Sassa, S. Sassa, H. Tang, & B. Tiwari (Eds.), Progress in Landslide Research and Technology, Volume 1 Issue 2, 2022 (pp. 247–255). Springer International Publishing. https://doi.org/10.1007/978-3-031-18471-0_20

Tkhak, K. S. (2013). Past, Present and Future Passive Seismic Tasks for Sustainable Development. Sustainable Earth Sciences 2013, Pau, France. https://doi.org/10.3997/2214-4609.20131639

Turner, B. (2014). Commonwealth of Independent States (CIS). In B. Turner (Ed.), The Statesman’s Yearbook (pp. 46–47). London: Palgrave Macmillan UK. https://doi.org/10.1007/978-1-349-67278-3_29

Wang, T., Chen, J., Li, P., Yin, Y., & Shen, C. (2019). Natural tracing for concentrated leakage detection in a rockfill dam. Engineering Geology, 249, 1–12. https://doi.org/10.1016/j.enggeo.2018.12.018

Wu, X., Chen, X., Zhan, F. B., & Hong, S. (2015). Global research trends in landslides during 1991–2014: A bibliometric analysis. Landslides, 12(6), 1215–1226. https://doi.org/10.1007/s10346-015-0624-z

Wu, X., Ren, F., & Niu, R. (2014). Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China. Environmental Earth Sciences, 71(11), 4725–4738. https://doi.org/10.1007/s12665-013-2863-4

Xaliqulov, M., Kannazarova, Z., Norchayev, D., Juliev, M., Turkmenov, X., Shermuxamedov, X., Ibragimova, G., & Abduraxmonova, S. (2023). Root harvester machine: A review of papers from the Scopus database published in English for the period of 1982-2022. E3S Web of Conferences, 402, 10010. https://doi.org/10.1051/e3sconf/202340210010

Yamashkin, S. A., Yamashkin, A. A., Zanozin, V. V., Radovanovic, M. M., & Barmin, A. N. (2020a). Improving the efficiency of deep learning methods in remote sensing data analysis: Geosystem approach. IEEE Access, 8, 179516–179529. https://doi.org/10.1109/ACCESS.2020.3028030

Yang, D., Qiu, H., Pei, Y., Hu, S., Ma, S., Liu, Z., et al. (2020). Spatial and Temporal Evolution of the Infiltration Characteristics of a Loess Landslide. ISPRS International Journal of Geo-Information, 9(1), 26. https://doi.org/10.3390/ijgi9010026

Zhang, K., Wang, S., Bao, H., & Zhao, X. (2019). Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province, China. Natural Hazards and Earth System Sciences, 19(1), 93–105. https://doi.org/10.5194/nhess-19-93-2019

Zhao, K., Coco, G., Gong, Z., Darby, S. E., Lanzoni, S., Xu, F., et al. (2022). A Review on Bank Retreat: Mechanisms, Observations, and Modeling. Reviews of Geophysics, 60(2), e2021RG000761. https://doi.org/10.1029/2021RG000761

How to Cite

APA

Kannazarova, Z., Khadjieva, Z., Abdikairov, B., Juliev, M., Sharipov, Z. & Berdimuratov, P. (2025). Landslide Research in CIS countries: Remote Sensing, Hazards, and Research Trends. Earth Sciences Research Journal, 29(3), 249–259. https://doi.org/10.15446/esrj.v29n3.118866

ACM

[1]
Kannazarova, Z., Khadjieva, Z., Abdikairov, B., Juliev, M., Sharipov, Z. and Berdimuratov, P. 2025. Landslide Research in CIS countries: Remote Sensing, Hazards, and Research Trends. Earth Sciences Research Journal. 29, 3 (Oct. 2025), 249–259. DOI:https://doi.org/10.15446/esrj.v29n3.118866.

ACS

(1)
Kannazarova, Z.; Khadjieva, Z.; Abdikairov, B.; Juliev, M.; Sharipov, Z.; Berdimuratov, P. Landslide Research in CIS countries: Remote Sensing, Hazards, and Research Trends. Earth sci. res. j. 2025, 29, 249-259.

ABNT

KANNAZAROVA, Z.; KHADJIEVA, Z.; ABDIKAIROV, B.; JULIEV, M.; SHARIPOV, Z.; BERDIMURATOV, P. Landslide Research in CIS countries: Remote Sensing, Hazards, and Research Trends. Earth Sciences Research Journal, [S. l.], v. 29, n. 3, p. 249–259, 2025. DOI: 10.15446/esrj.v29n3.118866. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/118866. Acesso em: 27 dec. 2025.

Chicago

Kannazarova, Zulfiya, Zukhra Khadjieva, Bekmurat Abdikairov, Mukhiddin Juliev, Zayniddin Sharipov, and Parakhat Berdimuratov. 2025. “Landslide Research in CIS countries: Remote Sensing, Hazards, and Research Trends”. Earth Sciences Research Journal 29 (3):249-59. https://doi.org/10.15446/esrj.v29n3.118866.

Harvard

Kannazarova, Z., Khadjieva, Z., Abdikairov, B., Juliev, M., Sharipov, Z. and Berdimuratov, P. (2025) “Landslide Research in CIS countries: Remote Sensing, Hazards, and Research Trends”, Earth Sciences Research Journal, 29(3), pp. 249–259. doi: 10.15446/esrj.v29n3.118866.

IEEE

[1]
Z. Kannazarova, Z. Khadjieva, B. Abdikairov, M. Juliev, Z. Sharipov, and P. Berdimuratov, “Landslide Research in CIS countries: Remote Sensing, Hazards, and Research Trends”, Earth sci. res. j., vol. 29, no. 3, pp. 249–259, Oct. 2025.

MLA

Kannazarova, Z., Z. Khadjieva, B. Abdikairov, M. Juliev, Z. Sharipov, and P. Berdimuratov. “Landslide Research in CIS countries: Remote Sensing, Hazards, and Research Trends”. Earth Sciences Research Journal, vol. 29, no. 3, Oct. 2025, pp. 249-5, doi:10.15446/esrj.v29n3.118866.

Turabian

Kannazarova, Zulfiya, Zukhra Khadjieva, Bekmurat Abdikairov, Mukhiddin Juliev, Zayniddin Sharipov, and Parakhat Berdimuratov. “Landslide Research in CIS countries: Remote Sensing, Hazards, and Research Trends”. Earth Sciences Research Journal 29, no. 3 (October 29, 2025): 249–259. Accessed December 27, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/118866.

Vancouver

1.
Kannazarova Z, Khadjieva Z, Abdikairov B, Juliev M, Sharipov Z, Berdimuratov P. Landslide Research in CIS countries: Remote Sensing, Hazards, and Research Trends. Earth sci. res. j. [Internet]. 2025 Oct. 29 [cited 2025 Dec. 27];29(3):249-5. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/118866

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

137

Downloads

Download data is not yet available.