Published

2016-07-01

An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey

DOI:

https://doi.org/10.15446/esrj.v20n3.55440

Keywords:

Global geopotential model, GNSS/ levelling, Geoid undulations, Orthometric and ellipsoidal heights, Modelo geopotencial global, nivelación GNSS, ondulaciones geoidales, alturas geoide y ortométricas. (en)

Downloads

Authors

  • Serkan Doganalp Necmettin Erbakan University, Department of Geomatics Engineering, 42090, Konya, TURKEY

The aim of this study is to present the evaluations based on comparisons of geoid heights that are computed from several global geopotential models (GGMs) and the GNSS/levelling data. In this application framework, differences between geoid heights obtained by GGMs and GNSS/levelling were computed. Then, the availability of geoid heights calculated by GGMs for engineering applications were investigated. The Konya-Polatli (Ankara) Express Train Project as a strip area project was chosen as the study area. The length of the project is approximately 210 km and consists of 110 benchmarks that belong to the Turkish National Triangulation Network. In this study a total of 69 GGMs were compared. In order to examine more detail, these models were classified as three groups based on CHAMP, GRACE and GOCE. Each group was evaluated separately and the results were obtained. According to results, the best five models were detected for geoid height differences (NGNSS/lev-Nggm) in terms of standard deviation. These are EIGEN-6c4, EIGEN-GRACE01s, EGM2008, EIGEN-6c3stat and EIGEN-6c2, respectively. Also, geoid heights were obtained using different parametric models. These parametric models were used in order to minimize the impact of the terms of bias, tilt etc. Generally, three, four, five and seven parametric models are used for the least-squares adjustment of the geoid height differences in the literature. Therefore, in this study the geoid heights were calculated for such different parametric models. After the geoid height values were computed from the parametric models, the best global geopotential models in terms of standard deviation were obtained as EIGEN-6c2, EIGEN-6c3stat, EGM2008, EIGEN-6c4 and EIGEN-GRACE01s, respectively.

 

Evaluación de modelos geopotenciales globales recientes para un proyecto de área lineal en Turquía

 

Resumen

El propósito de este estudio es presentar las evaluaciones comparativas de alturas geoidales que fueron computadas a partir de varios Modelos Geopotenciales Globales (GGM, del inglés Global Geopotential Models) y la nivelación de información del Sistema Global de Navegación por Satélite. Luego se investigó la disposición para aplicaciones de ingeniería de las alturas geoidales calculadas por los modelos GGM. Se seleccionó el proyecto del Tren Expreso Konya-Polatli (Ankara) como el área de estudio por ser un terreno lineal. La longitud del proyecto es de 210 kilómetros y consiste de 110 puntos de referencia que pertenecen a la Red de Triangulación Nacional de Turquía. En este estudio se compararon 69 modelos GGM. Para un mejor examen, estos modelos se clasificaron en tres grupos basados en CHAMP (CHAllenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) y GOCE (Gravity field and steady-state Ocean Circulation Explorer). Cada grupo se evaluó por separado. De acuerdo con los resultados, se detectaron los cinco modelos mejores para las diferencias de alturas geoidales (NGNSS/LEV-NGGM) en términos de desviación estándar. Estos son EIGEN-6c4, EIGENGRACE01s, EGM2008, EIGEN-6c3stat, y EIGEN-6c2. También se obtuvieron las alturas geoide a través de diferentes modelos paramétricos. Este mecanismo se utilizo para minimizar el impacto en términos de inclinación y declive. Generalmente, se utilizan tres, cuatro, cinco, y siete modelos paramétricos para el ajuste por mínimos cuadrados de las diferencias de alturas geoide, según la literatura. Por lo tanto, en este estudio se calcularon las alturas geoide con estos modelos paramétricos. Después de que se computaron los valores de altura geoide desde los modelos paramétricos, se obtuvieron los mejores modelos geopotenciales globales en términos de desviación estándar, estos son el EIGEN-6c2, EIGEN-6c3stat, EGM2008, EIGEN-6c4 y EIGEN-GRACE01s, respectivamente.  

References

Amos, M. J., & Featherstone, W. E. (2003). Comparisons of Recent Global Geopotential Models with Terrestrial Gravity Field Data over New Zealand and Australia. Geomatics Research Australasia, 79, 1-20

Benahmed Dahoa, S. A., Kahlouchea, S., & Fairhead, J.D. (2006). A procedure for modeling the differences between the gravimetric geoid model and GPS/leveling data with an example in the north part of Algeria. Computers & Geosciences, 32, 1733–1745

Bildirici, I.O., Ustun, A., Selvi, H. Z., Abbak, R. A., & Bugdayci, I. (2009). Assessment of shuttle radar topography mission elevation data based on topographic maps in Turkey. Cartography and Geographic Information Science, 36(1), 95-104. DOI: 10.1559/152304009787340205

Brockmann, J. M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., & Schuh, W. D. (2014). EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophysical Research Letters, 41(22), 8089-8099. DOI: 10.1002/2014GL061904

Bruinsma, S. L., Foerste, C., Abrikosov, O., Marty, J. C., Rio, M. H., Mulet, S., & Bonvalot, S. (2013). The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 40, 3607-3612. DOI: 10.1002/grl.50716

Bruinsma, S. L, Marty, J. C., Balmino, G., Biancale, R., Foerste, C., Abrikosov, O., & Neumayer, H. (2010). GOCE Gravity Field Recovery by Means of the Direct Numerical Method. Presented at the ESA Living Planet Symposium, June 27 - July 2, Bergen, Norway.

Ditmar, P., Kuznetsov, V., van Eck van der Sluijs, A. A., Schrama, E., & Klees, R. (2006). ‘DEOS_CHAMP-01C_70’: a model of the Earth’s gravity eld computed from accelerations of the CHAMP satellite. Journal of Geodesy, 79, 586-601.

Doganalp, S., & Selvi, H. Z. (2015). Local geoid determination in strip area projects by using polynomials, least-squares collocation and radial basis functions. Measurement, 73, 429-438. DOI: 10.1016/j. measurement.2015.05.030

Erol, B., Sideris, M. G., & Celik, R. N. (2009). Comparison of Global Geopotential Models from the CHAMP and GRACE Missions for Regional Geoid Modelling in Turkey. Studia Geophysica et Geodaetica, 53(4), 419-441.

Farahani, H. H., Ditmar, P., Klees, R., Liu, X., Zhao, Q., & Guo, J. (2013). The static gravity field model DGM-1S from GRACE and GOCE data: computation, validation and an analysis of GOCE mission’s added value. Journal of Geodesy, 87, 843-867. DOI: 10.1007/s00190-013-0650-3

Featherstone, W. E. (2002). Expected Contributions of Dedicated Satellite Gravity Field Missions to Regional Geoid Determination with Some Examples from Australia. Journal of Geospatial Engineering, 4(1), 1-19.

Flechtner, F., Dahle, C., Neumayer, K. H., König, R., & Förste, C. (2010). The Release 04 CHAMP and GRACE EIGEN Gravity Field Models. In: Frank Flechtner, Thomas Gruber, Andreas Güntner, Mioara Mandea, Markus Rothacher, Tilo Schöne & Jens Wickert (Eds.): System Earth via Geodetic-Geophysical Space Techniques, Springer, ISBN 978-3-642- 10227-1. DOI: 978-3-642-10228-8

Földvary, L., Svehla, D., Gerlach, C., Wermuth, M., Gruber, T., Rummel, R., Rothacher, M., Frommknecht, B., Peters, T., & Steigenberger, P. (2005). Gravity Model TUM-2Sp Based on the Energy Balance Approach and Kinematic CHAMP Orbits. In: Reigber, C., Lühr, H., Schwintzer, P., & Wickert, J. (eds.) Earth Observation with CHAMP, Results from Three Years in Orbit, p. 13-18. Springer, ISBN (Print) 978-3-540-22804-2, ISBN (Online) 978-3-540-26800-0. DOI: 10.1007/3-540-26800-6_2

Förste, C., Bruinsma, S. L., Abrikosov, O., Lemoine, J. M., Schaller, T., Götze, H. J., Ebbing, J., Marty, J. C., Flechtner, F., Balmino, G., & Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. Presented at the 5th GOCE User Workshop, Paris.

Förste, C., Bruinsma, S. L., Flechtner, F., Marty, J. C., Lemoine, J. M., Dahle, C., Abrikosov, O., Neumayer, K. H., Biancale, R., Barthelmes, F., & Balmino, G. (2012). A preliminary update of the Direct approach GOCE Processing and a new release of EIGEN-6C. Presented at the AGU Fall Meeting 2012, San Francisco, USA, 3-7 Dec, Abstract No. G31B-0923.

Förste, C., Bruinsma, S. L., Shako, R., Marty, J. C., Flechtner, F., Abrikosov, O., Dahle, C., Lemoine, J. M., Neumayer, K. H., Biancale, R., Barthelmes, F., König, R., & Balmino, G. (2011). EIGEN-6 - A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts, 13, EGU2011-3242-2, EGU General Assembly.

Förste, C., Flechtner, F., Schmidt, R., König, R., Meyer, U., Stubenvoll, R., Rothacher, M., Barthelmes, F., Neumayer, K. H., Biancale, R., Bruinsma, S. L., & Lemoine, J. M. (2006). A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface gravity data. Geophysical Research Abstracts, (8), 03462.

Förste, C., Flechtner, F., Schmidt, R., Meyer, U., Stubenvoll, R., Barthelmes, F., König, R., Neumayer, K. H., Rothacher, M., Reigber, C., Biancale, R., Bruinsma, S., Lemoine, J.M., & Raimondo, J. C. (2005c). A new high resolution global gravity field model derived from combination of GRACE and CHAMP Mission and Altimetry/Gravimetry Surface Gravity Data. Poster g004_ EGU05-A-04561.pdf presented at EGU General Assembly Vienna, Austria, 24–29, April.

Förste, C., Flechtner, F., Schmidt, R., Stubenvoll, R., Rothacher, M., Kusche, J., Neumayer K. H., Biancale, R., Lemoine, J. M., Barthelmes, F., Bruinsma, S. L., König R., & Meyer, U. (2008) EIGEN-GL05C - A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophysical Research Abstracts, 10, EGU2008-A-03426, SRef-ID: 1607-7962/gra/EGU2008-A-03426

Fotopoulos, G., Kotsakis, C., & Sideris, M. G. (2003). How accurately can we determine orthometric height differences from GPS and geoid data? Simulated case studies in Western Canada. J Surv Eng, 129(1), 1–10

Gatti, A., Reguzzoni, M., Migliaccio, F., & Sanso, F. (2014). Space-wise grids of gravity gradients from GOCE data at nominal satellite altitude. Presented at the 5th GOCE User Workshop, Paris.

Gerlach, C., Földvary, L., Svehla, D., Gruber, T., Wermuth, M., Sneeuw, N., Frommknecht, B., Oberndorfer, H., Peters, T., Rothacher, M., Rummel, R., & Steigenberger, P. (2003). A CHAMP-only gravity field model from kinematic orbits using the energy integral. Geophysical Research Letters, 30(20), 2037, DOI:10.1029/2003GL018025

Gikas, V., Mpimis, A., & Androulaki, A. (2013). Proposal for Geoid Model Evaluation from GNSS-INS/Leveling Data: Case Study along a Railway Line in Greece. Journal of Surveying Engineering, 139(2), 95.

Godah, W., & Krynski, J. (2013). Comparisions of GGMs based on one year GOCE observations with the EGM08 and terrestrial data over the area of Sudan. International Journal of Applied Earth Observation and Geoinformation, 35, 128–135. DOI: 10.1016/j.jag.2013.11.003

Goiginger, H., Höck, E., Rieser, D., Mayer-Gürr, T., Maier, A., Krauss, S., Pail, R., Fecher, T., Gruber, T., Brockmann, J. M., Krasbutter, I., Schuh, W. D., Jäggi, A., Prange, L., Hausleitner, W., Baur, O., & Kusche, J. (2011). The combined satellite-only global gravity field model GOCO02S. Presented at the 2011 General Assembly of the European Geosciences Union, Vienna, Austria, 4-8 April.

Guimaraes, G., Matos, A., & Blitzkow, D. (2012). An evaluation of recent GOCE geopotential models in Brazil. Journal of Geodetic Science, 2(2), 144– 155, DOI: 10.2478/v10156-011-0033-8

Heiskanen, W. A., & Moritz, H. (1984). Physical Geodesy, Institute of Physical Geodesy, Technical University Graz, Austria.

Hirt, C. (2011). Assessment of EGM2008 over Germany using accurate quasigeoid heights from vertical deflections, GCG05 and GPS/ levelling. Zeitschrift fuer Geodaesie, Geoinformation und Landmanagement (zfv), 136(3), 138–149

Hofmann-Wellenhof, B., & Moritz, H. (2005). Physical Geodesy. ISBN-13978-3- 211-23584-3. Springer-Verlag Wien.

Huang, J., & Véronneau, M. (2004). Applications of downward continuation in gravimetric geoid modeling - case studies in Western Canada. J. Geod., 79, 135-145.

Ilk, K. H., Mayer-Gürr, T., & Feuchtinger, M. (2003). Gravity Field Recovery by Analysis of Short Arcs of CHAMP. Proceedings of the 2nd Science Workshop of CHAMP.

Jäggi, A. (2007). Pseudo-Stochastic Orbit Modeling of Low Earth Satellites Using the Global Positioning System. PhD thesis, Institut für Geodäsie und Photogrammetrie, Geodätisch-geophysikalische Arbeiten in der Schweiz. vol.73, ISBN:978-3-908440-17-8

Jäggi, A, Beutler, G., & Mervart, L. (2008). GRACE Gravity Field Determination using the Celestial Mechanics Approach - First Results. Presented at the IAG Symposium on “Gravity, Geoid, and Earth Observation 2008”, Chania/Greece

Jäggi, A., Beutler, G., Meyer, U., Prange, L., Dach, R., & Mervart, L. (2009). AIUB- GRACE02S -- Status of GRACE Gravity Field Recovery using the Celestial Mechanics Approach. Presented at the IAG Scientific Assembly 2009, August 31 - September 4, Buenos Aires, Argentina.

Jäggi, A., Meyer, U., Beutler, G., Prange, L., Dach, R., & Mervart, L. (2011). AIUB- GRACE03S: A static gravity field model computed with simultaneously solved-for time variations from 6 years of GRACE data using the Celestial Mechanics Approach. Paper in preparation.

Janak, J., & Pitonak, M. (2011) Comparison and testing of GOCE global gravity models in Central Europe. Journal of Geodetic Science, 1(4), 333–347. DOI: 10.2478/v10156-011-0010-2.

Kaula, W. (1966). Theory of Satellite Geodesy-Applications of Satellites to Geodesy. Dover Publications, Inc., Mineola, New York.

Kiamehr, R., & Sjöberg, L. E. (2005). Comparison of the Qualities of Recent Global and Local Gravimetric Geoid Models in Iran. Stud. Geophys. Geod., 49(3), 289-304.

Kılıçoğlu, A., Direnç, A., Simav, M., Lenk, O., Aktuğ, B., & Yıldız, H. (2009). Evaluation of the Earth Gravitational Model 2008 in Turkey. Newton’s Bull, Special Issue: “External Quality Evaluation Reports of EGM08”, 4, 164–171. ISSN: 1810–8555

Kotsakis, C., Katsambalos, K., Ampatzidis, D., & Gianniou, M. (2008). Evaluation of EGM08 in Greece using GPS and leveling heights. IAG International Symposium on Gravity, Geoid and Earth Observation, Chania, Greece.

Kotsakis, C., Sideris, M. G. (1999). On the adjustment of combined GPS/ levelling/geoid networks. J. Geodesy, 73 (8), 412–421.

Mayer-Gürr, T, Eicker, A., & Ilk, K. H. (2006). ITG-GRACE02s: a GRACE gravity field derived from short arcs of the satellite’s orbit. Proceedings of the First Symposium of International Gravity Field Service, Istanbul

Mayer-Gürr, T., Eicker, A., & Ilk, K. H. (2007). ITG-Grace03 Gravity Field Model. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace03

Mayer-Gürr, T., Rieser, D., Höck, E., Brockmann, J. M., Schuh, W. D., Krasbutter, I., Kusche, J., Maier, A., Krauss, S., Hausleitner, W., Baur, O., Jäggi, A., Meyer, U., Prange, L., Pail, R., Fecher, T., & Gruber, T. (2012). The new combined satellite only model GOCO03s. Abstract submitted to GGHS2012, Venice (Poster). http://www.goco.eu/

Mayer-Gürr, T., Zehentner, N., Klinger, B., & Kvas, A. (2014). ITSG-Grace2014: a new GRACE gravity field release computed in Graz. Presented at the GRACE Science Team Meeting (GSTM), Potsdam.

Migliaccio, F., Reguzzoni, M., Gatti, A., Sanso, F., & Herceg, M. (2011). A GOCE-only global gravity field model by the space-wise approach. Proceedings of the 4th International GOCE User Workshop, 31 March - 1 April, Munich.

Migliaccio, F., Reguzzoni, M., Sanso, F., Tscherning, C. C., & Veicherts, M. (2010). GOCE data analysis: the space-wise approach and the first space-wise gravity field model. Presented at the ESA Living Planet Symposium 2010, Bergen, June 27 - July 2, Norway.

Pail, R., Bruinsma, S. L., Migliaccio, F., Foerste, C., Goiginger, H., Schuh, W. D., Hoeck, E., Reguzzoni, M., Brockmann, J. M., Abrikosov, O., Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sanso, F., & Tscherning, C. C. (2011) First GOCE gravity field models derived by three different approaches. Journal of Geodesy, 85, 819-843. DOI: 10.1007/ s00190-011-0467-x

Pail, R., Goiginger, H., Mayrhofer, R, Schuh, W., Brockmann, J. M., Krasbutter, I., Hoeck, E., & Fecher, T. (2010a). GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. Presented at the ESA Living Planet Symposium 2010, Bergen, June 27 - July 2, Norway.

Pail R, Goiginger H, Schuh WD, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010b) Combined satellite gravity eld model GOCO01S derived from GOCE and GRACE. Geophysical Research Letters, 37, L20314, doi: 10.1029/2010GL044906

Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth Gravitational Model to Degree 2160: EGM2008. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18

Prange L (2011) Global Gravity Field Determination Using the GPS Measurements Made Onboard the Low Earth Orbiting Satellite CHAMP. PhD Thesis, Geodätisch-geophysikalische Arbeiten in der Schweiz, vol. 81. http://www.sgc.ethz.ch/sgc-volumes/sgk-81.pdf

Prange L, Jäggi A, Beutler G, Dach R, Mervart L (2009) Gravity Field Determination at the AIUB - the Celestial Mechanics Approach. In: Observing our Changing Earth, edited by M. Sideris, Vol. 133, p. 353-362, doi: 10.1007/978-3-540-85426-5_42, Springer ISBN 978- 3-540-85425-8

Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine JM, König R, Loyer S, Neumayer H, Marty JC, Barthelmes F, Perosanz F, Zhu SY (2003a) Global Gravity Field Recovery Using Solely GPS Tracking and Accelerometer Data from CHAMP. Space Science Reviews, 29, p. 55-66

Reigber C, Jochmann H, Wünsch J, Petrovic S, Schwintzer P, Barthelmes F, Neumayer KH, König R, Förste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Perosanz F (2004a) Earth Gravity Field and Seasonal Variability from CHAMP. In: Reigber, C., Lühr, H., Schwintzer, P., Wickert, J. (eds.), Earth Observation with CHAMP - Results from Three Years in Orbit, Springer, Berlin, p. 25-30

Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2003c) First EIGEN Gravity Field Model based on GRACE Mission Data Only

Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005a) An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN- GRACE02S. Journal of Geodynamics 39, p. 1-10

Reigber C, Schwintzer P, Barthelmes F, König R, Förste C, Balmino G, Biancale R, Lemoine J, Loyer S, Perosanz F, Fayard T (2003) The CHAMP-only Earth gravity field model EIGEN-2. Adv. Space Res., 31(8):1883–1888

Reigber C, Schwintzer P, Neumayer KH, Barthelmes F, König R, Förste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Bruinsma SL, Perosanz F, Fayard T (2003b) The CHAMP-only Earth Gravity Field Model EIGEN-2. Advances in Space Research 31(8), p. 1883-1888, doi: 10.1016/S0273-1177(03)00162-5

Reigber C, Schwintzer P, Stubenvoll R, Schmidt R, Flechtner F, Meyer U, König R, Neumayer KH, Förste C, Barthelmes F, Zhu SY, Balmino G, Biancale R, Lemoine JM, Meixner H, Raimondo JC (2006) A High Resolution Global Gravity Field Model Combining CHAMP and GRACE Satellite Mission and Surface Data: EIGEN-CG01C. Scienti c Technical Report STR06/07, GeoForschungsZentrum Potsdam

Ries JC, Bettadpur S, Poole S, Richter T (2011) Mean Background Gravity Fields for GRACE Processing; presented at the GRACE Science Team Meeting, Austin, TX, August 8-10

Rodriguez-Caderot G, Lacy MC, Gil AJ, Blazquez B (2006) Comparing recent geopotential models in Andalusia (Southern Spain). Stud. Geophys. Geod. 50: 619-631

Rudenko S, Dettmering D, Esselborn S, Schoene T, Foerste C, Lemoine JM, Ablain M, Alexandre D, Neumayer KH (2014) In uence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Advances in Space Research, doi: 10.1016/j.asr.2014.03.010

Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions-principles and aims. Journal of Geodynamics, 33:3–20

Schall J, Eicker A, Kusche J (2014) The ITG-Goce02 gravity eld model from GOCE orbit and gradiometer data based on the short arc approach. Journal of Geodesy, 88, p. 403-409, doi: 10.1007/s00190-014-0691-2

Seeber G (2003) Satellite Geodesy. 2nd edition Walter de Gruyter, Berlin Shen Y, Chen Q, Hsu H, Zhang X, Lou L (2013) A modified short arc approach for recovering gravity eld model; presented at the GRACE Science Team Meeting, Austin, TX

Smith DA (1998) There is no such thing as “The” EGM96 geoid: Subtle points on the use of a global geopotential model. IGeS Bulletin N. 8, International Geoid Service, pp. 17-28, Milan. Soycan M (2014) Improving EGM2008 by GPS and Leveling Data at Local Scale. Boletim de Ciencias Geodesicas, 20(1), 3-18

Tapley BD, Bettadpur S, Watkins MM, Reigber C (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophys.Res. Lett., 31(doi:10.1029/2004GL019920):9607

Tapley BD, Chambers DP, Bettadpur S, Ries JC (2003) Large scale circulation from the GRACE GGM01 Geoid. Geophysical Research Letters, 30(22), 2163, doi: 10.1029/2003GL018622

Tapley BD, Flechtner F, Bettadpur S, Watkins MM (2013) The status and future prospect for GRACE after the first decade. Eos Trans., Fall Meet. Suppl., Abstract G22A-01

Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 Mean Earth Gravity Model from GRACE. Eos Trans. AGU 88(52), Fall Meet. Suppl., Abstract G42A-03

Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 Mean Earth Gravity Model from GRACE. Eos Trans. AGU 88(52), Fall Meet. Suppl., Abstract G42A-03

Ustun A, Demirel H (2006) Long-range geoid testing by GPS-leveling data in Turkey. Journal of Surveying Engineering, 132(1):15-23 UTEX CSR (2004) Center for Space Research, University of Texas at Austin, http://www.csr.utexas.edu/grace/gravity UTEX CSR (2003) http://www.csr.utexas.edu/grace/gravity/

Vaníček P, Featherstone WE (1998) Performance of three types of Stokes’s Weigelt kernel in the combined solution for the geoid. Journal of Geodesy , 72, 12, pp. 684-697.

Van Dam T, Jäggi A, Prange L, Tourian MJ, Keller W, Sneeuw N (2013) Time-Variable Gravity Signal in Greenland Revealed by High-Low Satellite-to-Satellite Tracking. Journal of Geophysical Research, Vol. 118, No. 7, p. 3848-3859, doi: 10.1002/jgrb.50283

Wenzel H (1998) Ultra High Degree Geopotential Models GPM98A and GPM98B to Degree 1800. Proceeding of the Joint Meeting International Gravity Commission, 71-80, Budapest, Finnish Geodetic Institute, Helsinki

Wermuth M, Svehla D, Földvary L, Gerlach C, Gruber T, Frommknecht B, Peters T, Rothacher M, Rummel R, Steigenberger P (2004) A gravity eld model from two years of CHAMP kinematic orbits using the energy balance approach. Presentation at EGU 1st General Assembly, Nice/France

Wessel P, Smith WHF (1998) New improved version of Generic Mapping Tools released. EOS Trans. Amer. Geophys. U., 79 (47), pp. 579.

Yi W, Rummel R, Gruber T (2013) Gravity field contribution analysis of GOCE gravitational gradient components. Studia Geophysica et Geodaetica Vol. 57, No. 2, p. 174-202, ISSN (Online) 1573-1626, doi: 10.1007/s11200-011-1178-8

Yilmaz I, Yilmaz M, Güllü M, Turgut B (2010) Evaluation of recent global geopotential models based on GPS/levelling data over Afyonkarahisar (Turkey). Scienti c Research and Essays Vol. 5(5), pp. 484-493

How to Cite

APA

Doganalp, S. (2016). An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey. Earth Sciences Research Journal, 20(3), C1-C10. https://doi.org/10.15446/esrj.v20n3.55440

ACM

[1]
Doganalp, S. 2016. An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey. Earth Sciences Research Journal. 20, 3 (Jul. 2016), C1-C10. DOI:https://doi.org/10.15446/esrj.v20n3.55440.

ACS

(1)
Doganalp, S. An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey. Earth sci. res. j. 2016, 20, C1-C10.

ABNT

DOGANALP, S. An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey. Earth Sciences Research Journal, [S. l.], v. 20, n. 3, p. C1-C10, 2016. DOI: 10.15446/esrj.v20n3.55440. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/55440. Acesso em: 28 mar. 2024.

Chicago

Doganalp, Serkan. 2016. “An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey”. Earth Sciences Research Journal 20 (3):C1-C10. https://doi.org/10.15446/esrj.v20n3.55440.

Harvard

Doganalp, S. (2016) “An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey”, Earth Sciences Research Journal, 20(3), pp. C1-C10. doi: 10.15446/esrj.v20n3.55440.

IEEE

[1]
S. Doganalp, “An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey”, Earth sci. res. j., vol. 20, no. 3, pp. C1-C10, Jul. 2016.

MLA

Doganalp, S. “An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey”. Earth Sciences Research Journal, vol. 20, no. 3, July 2016, pp. C1-C10, doi:10.15446/esrj.v20n3.55440.

Turabian

Doganalp, Serkan. “An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey”. Earth Sciences Research Journal 20, no. 3 (July 1, 2016): C1-C10. Accessed March 28, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/55440.

Vancouver

1.
Doganalp S. An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey. Earth sci. res. j. [Internet]. 2016 Jul. 1 [cited 2024 Mar. 28];20(3):C1-C10. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/55440

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Serkan Doğanalp. (2022). Assessment of recent global geopotential models based on the Auvergne test area data. Engineering Research Express, 4(4), p.045017. https://doi.org/10.1088/2631-8695/ac9fab.

2. Brian Bramanto, Dina A. Sarsito, Irwan Gumilar, Wedyanto Kuntjoro. (2022). Sensing the Terrestrial and Atmospheric Hydrological Dynamic using Satellite Gravimeter and GNSS. IOP Conference Series: Earth and Environmental Science, 1047(1), p.012001. https://doi.org/10.1088/1755-1315/1047/1/012001.

3. Yunus Aytaç Akdoğan, Hasan Yildiz, Gonca Okay Ahi. (2019). Evaluation of global gravity models from absolute gravity and vertical gravity gradient measurements in Turkey. Measurement Science and Technology, 30(11), p.115009. https://doi.org/10.1088/1361-6501/ab2f1c.

4. Nurul Shafiqah Hazelin Noor Azmin, Muhammad Faiz Pa’suya, Ami Hassan Md Din, Mohamad Azril Che Aziz, Noorhurul Ain Othman. (2024). Evaluating the Impact of the Recent Combined and Satellite-Only Global Geopotential Model on the Gravimetric Geoid Model. IOP Conference Series: Earth and Environmental Science, 1316(1), p.012006. https://doi.org/10.1088/1755-1315/1316/1/012006.

5. Ropesh Goyal, Onkar Dikshit, Nagarajan Balasubramania. (2019). Evaluation of global geopotential models: a case study for India. Survey Review, 51(368), p.402. https://doi.org/10.1080/00396265.2018.1468537.

Dimensions

PlumX

Article abstract page views

1082

Downloads

Download data is not yet available.