Published

2019-01-01

Assessing the source and spatial distribution of chemical composition of a rift lake, using multivariate statistical, hydrogeochemical modeling and remote sensing

Evaluación del origen y distribución espacial de la composición química en un lago tipo rift, utilizando modelación estadística multivariada, hidrogeoquímica y teledetección

DOI:

https://doi.org/10.15446/esrj.v23n1.66429

Keywords:

Rift lake, Chemical composition, End Members, Multivariate Analysis, Remote Sensing, (en)
Lago rift, Composición química, Miembros extremos, Análisis multivariado, Percepción remota, (es)

Downloads

Authors

The chemical composition of a freshwater surface depends on the sources of input that can be of natural or anthropogenic origin. This study examined the spatial variability of the water quality from Chapala Lake and discussed the possible sources  to this freshwater surface which is the largest rift lake in Mexico. The methodology included multivariate statistical techniques to analyze the possible relationship between water quality and the natural and anthropogenic factors of the area. The outcome showed  the existence of four groups  of water mixture in the lake. Each one showed two or three end members that characterized its chemical nature. The different groups showed a spatial distribution and a particular spectral behavior was detected from the analysis of a Landsat 7 ETM+ image. The spectral signatures extracted from the satellite image showed a high reflectivity in the range of 830 - 1300 nm for the water provided by the  Lerma-Chapala (group IV) system, which represents the most polluted water in the lake. This spectral behavior is not present in the rest of the group. The Western portion of the lake is fed mainly by open water. Contributions from groundwater dominate the Central part, and in the Eastern region, the primary source is the contaminated water from the Lerma river system. A high hydraulic head (hydraulic barrier) prevents the highest level of pollution from the Lerma river. This hydraulic barrier constituted by a significant portion of groundwater is at the Central part of the lake. Furthermore, the most polluted water flows  directly to the Metropolitan Region of Guadalajara through the Santiago river. The predominant role played by the groundwater in the dynamics of Chapala  Lake is explained, in part, from its tectonic origin. The dynamics of water in the Chapala Lake suggest the need to implement some management plans considering the tectonic origin of the Lake as an advantage for the control of pollution because of the significant  contribution of groundwater in the Chapala Lake freshwater system.

La composición química de una superficie de agua dulce depende de las fuentes de entrada que pueden ser de origen natural o antropogénico. Este estudio examinó la variabilidad espacial de la calidad del agua del lago de Chapala y discute las posibles fuentes de contribución a esta superficie de agua dulce que es el lago rift más grande de México. La metodología incluyó técnicas estadísticas multivariadas y análisis de imágenes satelitales, para analizar la posible relación entre la calidad del agua y los factores naturales y antropogénicos de la zona. Los resultados indicaron la existencia de cuatro grupos de mezclas de agua en el lago. Cada grupo muestra dos o tres miembros extremos que caracterizan la naturaleza química del agua. Los diferentes grupos presentan una distribución espacial y un comportamiento espectral particular detectado a partir del análisis de una imagen Landsat 7 ETM+. Las firmas espectrales extraídas de la imagen satelital muestran una alta reflectividad en el rango de 830-1300 nm para el agua proporcionada por el sistema Lerma-Chapala (Grupo IV), que representa el agua más contaminada del lago. Este comportamiento espectral no se presenta en el resto de los grupos. Los datos obtenidos muestran que la parte occidental del lago es alimentada principalmente por agua superficial. Los aportes de agua subterránea dominan la parte Central, y en la región Oriental, la principal fuente es el agua contaminada del  sistema Lerma-Chapala. La mayor contaminación proviene del Río Lerma, pero ésta se rompe por una barrera hidráulica constituida por aportes considerables de agua subterránea hacia la región Central. Por eso, el agua más contaminada sigue directamente a la región metropolitana de Guadalajara a través del Río Santiago. El papel predominante del agua subterránea en la dinámica del Lago de Chapala se explica, en parte, por el origen tectónico de este cuerpo de agua dulce. La dinámica observada en el Lago de Chapala sugiere que es necesario implementar planes de gestión en los cuales se considere el origen tectónico del lago con sus importantes aportes de agua subterránea como una ventaja para el control de la contaminación por la actividad humana.

References

Alexakis, D. (2011). Assessment of water quality in the Messolonghi–Etoliko and Neochorio region (West Greece) using hydrochemical and statistical analysis methods. Environmental Monitoring and Assessment, 182(1-4), 397-413. https://doi.org/10.1007/s10661-011-1884-2

Anttila, S., Kairesalo, T., & Pellikka, P. (2008). A feasible method to assess inaccuracy caused by patchiness in water quality monitoring. Environmental Monitoring and Assessment, 142(1-3), 11-22. https://doi.org/10.1007/s10661-007-9904-y

Barth, J.A.C., & Veizer J. (2004). Water mixing in a St. Lawrence river embayment to outline potential sources of pollution. Applied Geochemistry, 19, 1637–1641. http://dx.doi.org/10.1016/j.apgeochem.2004.02.005

Barthel, R., & Banzhaf, S. (2016). Groundwater and surface water interaction at the regional-scale–A review with focus on regional integrated models. Water resources management, 30(1), 1-32. https://doi.org/10.1007/s11269-015-1163-z

Barthold, F. K., C. Tyralla, K. Schneider, K. B. Vaché, H.-G. Frede, and Breuer, L. (2011). How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis. Water Resources Research, 47, W08519. http://dx.doi.org/10.1029/2011WR010604

Calderón, A., Guridi, F., García, E., Rosado, E., Valdés, R., Pimentel, J. J., Nils, A. (2007). Material de origen natural que retiene cationes de metales pesados. Revista Iberoamericana de polímeros, 8(3), 218-228.

Carrión, C., Ponce-de León, C., Cram, S., Sommer, I., Hernández, M., Vanegas, C. (2012). Potential use of water hyacinth (Eichhornia crassipes) in Xochimilco for metal phytoremediation. Agrociencia, 46(6), 609-611.

CEA-Jalisco. (2013). Lago de Chapala. Available at: http://www.ceajalisco.gob.mx/chapala.html#lago [Last Access: January 15th, 2017].

Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903. https://doi.org/10.1016/j.rse.2009.01.007

Chávez, P.S., Berlin, G.L. & Sowers, L.B. (1982). Statistical method for selecting Landsat MSSratios. Journal of Applied Photographic Engineering, 8, 23-30.

Chávez, P.S., Guptill, S.C. & Bowell, J.A. (1984). Image processing techniques for thematic mapper data. Proc. ASPRS-ACSM Tech. Paper, 2, 728-742.

Chávez-Alcántar, A., Velázquez, Machuca, M., Pimentel-Equihua, J.L., Venegas-González, J., Montañez-Soto, J.L., Vázquez-Gálvez, G. (2011). Hidrogeoquímica de las aguas superficiales de la Ciénega de Chapala e índice de calidad de agua. Terra Latinoamericana, 29(1), 83-94.

Chernet, T., Travi, Y., & Valles, V. (2001). Mechanism of degradation of the quality of natural water in the lakes region of the Ethiopian rift valley. Water Research, 35(12), 2819-2832. https://doi.org/10.1016/S0043-1354(01)00002-1

Cifuentes, E., Kasten, F.L., Transande, L., & Goldman, R.H. (2011). Resetting our priorities in environmental health: An example from the south-north partnership in Lake Chapala, Mexico. Environmental Research, 111(6), 877-880. http://dx.doi.org/10.1016/j.envres.2011.05.017

Cruz-Guzmán Alcalá, M. (2007). La contaminación de Suelos y Aguas. Su prevención con nuevas sustancias naturales. Universidad de Sevilla. Serie Ciencias (74).

De-Anda, J., Shear, H., Maniak, U., Riedel, G. (2000). Phosphorus Balance in Lake Chapala (Mexico). Journal of Great Lakes Research, 26(2), 129-140. http://dx.doi.org/10.1016/S0380-1330(00)70680-0

De-Anda, J., Shear, H., Maniak, U., & Zárate-del-Valle, P.F. (2004). Solids distribution in lake Chapala, Mexico. Journal of the American Water Resources Association, 40(1), 97-109. http://dx.doi.org/10.1111/j.1752-1688.2004.tb01013.x

De-Anda, J., & Maniak, U. (2007). Modificaciones en el régimen hidrológico y sus efectos en la acumulación de fósforo y fosfatos en el lago de Chapala, México. Interciencia, 32(2), 100-107.

De la Mora-Orozco, C., Flores-Garnia, G., Ruiz-Corral, A., & García-Velasco, J. (2004). Modelaje estocástico de la variabilidad espacial de la calidad de agua en un ecosistema lacustre. Revista Internacional de Contaminación Ambiental, 20(3), 99-108.

Díaz, O., & Colasurdo, V. (2008). El agua revela sus secretos. Química de las Lagunas Pampenas (Capítulo III). In: Grosman, F., (Ed). Espejos en la llanura: Nuestras lagunas de la región Pampeana. Buenos Aires: Universidad Nacional del Centro de la Provincia de Buenos Aires, 47-66.

Downs, T. (1958). Fossil vertebrates from lago de Chapala, Jalisco, México. In: Congreso Geologico Internacional, 20th session Mexico City, session 7–Paleontologica, Taxonomia y Evolucion (Vol. 20, No. 7, pp. 75-77).

Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. The computer journal, 41(8), 578-588. https://doi.org/10.1093/comjnl/41.8.578

Fukushima, T., Matsushita, B., Oyama, Y., Yang, W., & Jaelani, L. M. (2014). A critical review on monitoring of lake water quality and ecosystem information using satellite images: towards a new era of water color remote sensing. Lakes: the mirrors of the earth, 15th world lake conference, Book of Proceedings: 201-203.

Gibbs, R. J. (1970). Mechanisms Controlling World Water Chemistry. Science, 170(3962), 1088-1090. http://dx.doi.org/10.1126/science.170.3962.1088

Hansen, A.M., Maya, P. (1997). Adsorption-desorption behaviors of Pb and Cd in Lake Chapala, Mexico. Environmental International, 23(4), 553-564. http://dx.doi.org/10.1016/S0160-4120(97)00062-7

Hansen, A.M., Van Afferden, M. (2004). El Lago de Chapala: Destino final del Río Lerma. En: Jiménez B. y Marín L (eds). El Agua en México Vista desde la Academia. Academia Mexicana de Ciencias, 1ª edición, Impreso en México, pp. 117-136.

Hernández-García, A. (2006). Mezcala: encuentros y desencuentros de una comunidad. Espiral, Estudios sobre estado y sociedad, 12(36), 97-128.

Hooper, R. P. (2001). Applying the scientific method to small catchment studies: a review of the Panola Mountain experience. Hydrological Processes, 15(10): 2039-2050. http://dx.doi.org/10.1002/hyp.255

Isaaks, E., & Srivastava, R. (1989). An Introduction to Applied Geostatistics. Oxford University Press Inc., New York, 561 p.

Kallio, K., Attila, J., Härmä, P., Koponen, S., Pulliainen, J., Hyytiäinen, U. M., & Pyhälahti, T. (2008). Landsat ETM+ images in the estimation of seasonal lake water quality in boreal river basins. Environmental Management, 42(3), 511-522. http://dx.doi.org/10.1007/s00267-008-9146-y

Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J.A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72(2), 301-309. https://doi.org/10.1016/j.ecoenv.2008.02.024

Lind, O.T., Dávalos-Lind, L.O. (2002). Interaction of water quantity with water quality: the Lake Chapala example. Hydrobiologia, 467, 159-167. http://dx.doi.org/10.1023/A:1014902630410

Long, A.J., & Valder J.F. (2011). Multivariate analyses with end-member mixing to characterize groundwater flow: Wind Cave and associated aquifers. Journal of Hydrology, 409, 315–327. http://dx.doi.org/10.1016/j.jhydrol.2011.08.028

López-Caloca, A., Tapia-Silva, F. O., Escalante-Ramírez, B. (2008). Lake Chapala change detection using time series. Proc. SPIE 7104, Remote Sensing for Agriculture, Ecosystems, and Hydrology X, 710405 (October 02, 2008); http://dx.doi.org/10.1117/12.800354

López-Hernández, M., Ramos-Espinosa, M.G., Carranza-Fraser, J. (2007). Análisis multimétrico para evaluar contaminación en el Río Lerma y Lago de Chapala. Hidrobiológica, 17(1), 17-30.

Luhr, J., S. Nelson, J. Allan, and I. Carmichael (1985). Active rifting in southwestern Mexico: Manifestations of an incipient eastward spreading-ridge jump. Geology, 13, 54-57.

MacIntyre, S. (2012). Climatic variability, mixing dynamics, and ecological consequences in the African Great Lakes. Climatic change and global warming of inland waters: Impacts and mitigation for ecosystems and societies, 311-336. http://dx.doi.org/10.1002/9781118470596.ch18

Moran-Ramirez, J., & Ramos-Leal, J. A. (2014). The VISHMOD Methodology with Hydrochemical Modeling in Intermountain (Karstic) Aquifers: Case of the Sierra Madre Oriental, Mexico. Journal of Geography and Geology, 6(2), 132-144. http://dx.doi.org/10.5539/jgg.v6n2p132

Nieboer, E., Richardson, D. H. (1980). The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environmental Pollution Series B, Chemical and Physical, 1(1), 3-26. http://dx.doi.org/10.1016/0143-148X(80)90017-8

Ndungu, J., Augustijn, D. C., Hulscher, S. J., Fulanda, B., Kitaka, N., & Mathooko, J. M. (2015). A multivariate analysis of water quality in Lake Naivasha, Kenya. Marine and Freshwater Research, 66(2), 177-186.

Njenga, J. W. (2004). Comparative studies of water chemistry of four tropical lakes in Kenya and India. Asian Journal of Water, Environment and Pollution, 1(1, 2), 87-97.

Nyenje, P. M., Foppen, J. W., Uhlenbrook, S., Kulabako, R., & Muwanga, A. (2010). Eutrophication and nutrient release in urban areas of sub-Saharan Africa—a review. Science of the Total Environment, 408(3), 447-455. https://doi.org/10.1016/j.scitotenv.2009.10.020

Ojiambo, B. S., Poreda, R. J., & Lyons, W. B. (2001). Ground Water/Surface Water Interactions in Lake Naivasha, Kenya, Using δ18O, δD, and 3H/3He Age‐Dating. Groundwater, 39(4), 526-533. http://dx.doi.org/10.1111/j.1745-6584.2001.tb02341.x

Peña-Núñez, N.L. (2006). Determinación de elementos traza (Ni, Cu, Pb, Cd, As y Hg) en el seno de Reloncaví, 2003. Escuela de Química y Farmacia. Facultad de Ciencias. Universidad Austral de Chile. Tesis

Quiroz-Castelán, Morán-Zúñiga, L.M., Molina-Astudillo, I., García-Rodríguez, J. (2004). Variación de los Organismos Fitoplanctónicos y la Calidad del Agua en el Lago de Chapala, Jalisco, México. Acta Universitaria, Universidad de Guanajuato, 14(1), 47-58.

Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. In: Encyclopedia of database systems (pp. 532-538). Springer US.

Rango, T., Petrini, R., Stenni, B., Bianchini, G., Slejko, F., Beccaluva, L., & Ayenew, T. (2010). The dynamics of central Main Ethiopian Rift waters: Evidence from δD, δ18O and 87Sr/86Sr ratios. Applied Geochemistry, 25(12), 1860-1871. https://doi.org/10.1016/j.apgeochem.2010.10.001

Rosas-Elguera, J., & Urrutia-Fucugauchi, J. (1998). Tectonic control of the volcano-sedimentary sequence of the Chapala graben, western Mexico. International Geology Review, 40(4), 350-362. https://doi.org/10.1080/00206819809465214

Rosenberry, D. O., & LaBaugh, J. W. (2008). Field techniques for estimating water fluxes between surface water and ground water (No. 4-D2). Geological Survey (US).

Sophocleous, M. (2002). Interactions between groundwater and surface water: the state of the science. Hydrogeology journal, 10(1), 52-67. https://doi.org/10.1007/s10040-001-0170-8

Talling, J. F., & Talling, I. B. (1965). The chemical composition of African lake waters. International Review of Hydrobiology, 50(3), 421-463.

Trujillo-Cárdenas, J.L., Saucedo-Torres, N.P., Zárate del Valle, P.F., Ríos-Donato, N., Mendizábal, E., Gómez-Salazar, S. (2010). Speciation and sources of toxic metals in sediments of Lake Chapala, Mexico. Journal of the Mexican Chemical Society, 54(2), 79-87.

Tuvikene, L. (2018). The effect of natural variability on the assessment of ecological status of shallow lakes (Doctoral dissertation, Eesti Maaülikool).

USGS. (2004). Phase 2 gap-fill algorithm: SLC-off gap-filled products gap-fill algorithm methodology. Available at https://landsat.usgs.gov/sites/default/files/documents/L7SLCGapFilledMethod.pdf [Last Access: October 20th, 2017].

Vargas S., Mollard, E. (2005). Los retos del agua en la cuenca Lerma-Chapala: aportes para su estudio y discusión. IMTA, México (MEX), 247 p.

Verpoorter, C., Kutser, T., & Tranvik, L. (2012). Automated mapping of water bodies using Landsat multispectral data. Limnol. Oceanogr. Methods, 10, 1037-1050. http://dx.doi.org/10.4319/lom.2012.10.1037

Wackernagel, H. (2013). Multivariate geostatistics: an introduction with applications. Springer Science & Business Media.

Werner, A. D., Bakker, M., Post, V. E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, T.C., & Barry, D. A. (2013). Seawater intrusion processes, investigation and management: recent advances and future challenges. Advances in Water Resources, 51, 3-26. https://doi.org/10.1016/j.advwatres.2012.03.004

Winter, T. C., Harvey, J., Franke, O., & Alley, W. (1998). Natural processes of ground-water and surface-water interaction. Ground Water and Surface Water: A Single Resource. US Geological Survey Circular, 1139, 2-50.

Zárate-del Valle, P. F., Rushdi, A. I., Simoneit, B. R. (2006). Hydrothermal petroleum of Lake Chapala, Citala Rift, western Mexico: Bitumen compositions from source sediments and application of hydrous pyrolysis. Applied geochemistry, 21(4), 701-712. http://dx.doi.org/10.1016/j.apgeochem.2006.01.002

How to Cite

APA

Noyola-Medrano, C., Ramos-Leal, J. A., López-Alvarez, B., Morán-Ramírez, J. and Fuentes-Rivas, R. M. (2019). Assessing the source and spatial distribution of chemical composition of a rift lake, using multivariate statistical, hydrogeochemical modeling and remote sensing. Earth Sciences Research Journal, 23(1), 43–55. https://doi.org/10.15446/esrj.v23n1.66429

ACM

[1]
Noyola-Medrano, C., Ramos-Leal, J.A., López-Alvarez, B., Morán-Ramírez, J. and Fuentes-Rivas, R.M. 2019. Assessing the source and spatial distribution of chemical composition of a rift lake, using multivariate statistical, hydrogeochemical modeling and remote sensing. Earth Sciences Research Journal. 23, 1 (Jan. 2019), 43–55. DOI:https://doi.org/10.15446/esrj.v23n1.66429.

ACS

(1)
Noyola-Medrano, C.; Ramos-Leal, J. A.; López-Alvarez, B.; Morán-Ramírez, J.; Fuentes-Rivas, R. M. Assessing the source and spatial distribution of chemical composition of a rift lake, using multivariate statistical, hydrogeochemical modeling and remote sensing. Earth sci. res. j. 2019, 23, 43-55.

ABNT

NOYOLA-MEDRANO, C.; RAMOS-LEAL, J. A.; LÓPEZ-ALVAREZ, B.; MORÁN-RAMÍREZ, J.; FUENTES-RIVAS, R. M. Assessing the source and spatial distribution of chemical composition of a rift lake, using multivariate statistical, hydrogeochemical modeling and remote sensing. Earth Sciences Research Journal, [S. l.], v. 23, n. 1, p. 43–55, 2019. DOI: 10.15446/esrj.v23n1.66429. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/66429. Acesso em: 26 jan. 2025.

Chicago

Noyola-Medrano, Cristina, José Alfredo Ramos-Leal, Briseida López-Alvarez, Janet Morán-Ramírez, and Rosa María Fuentes-Rivas. 2019. “Assessing the source and spatial distribution of chemical composition of a rift lake, using multivariate statistical, hydrogeochemical modeling and remote sensing”. Earth Sciences Research Journal 23 (1):43-55. https://doi.org/10.15446/esrj.v23n1.66429.

Harvard

Noyola-Medrano, C., Ramos-Leal, J. A., López-Alvarez, B., Morán-Ramírez, J. and Fuentes-Rivas, R. M. (2019) “Assessing the source and spatial distribution of chemical composition of a rift lake, using multivariate statistical, hydrogeochemical modeling and remote sensing”, Earth Sciences Research Journal, 23(1), pp. 43–55. doi: 10.15446/esrj.v23n1.66429.

IEEE

[1]
C. Noyola-Medrano, J. A. Ramos-Leal, B. López-Alvarez, J. Morán-Ramírez, and R. M. Fuentes-Rivas, “Assessing the source and spatial distribution of chemical composition of a rift lake, using multivariate statistical, hydrogeochemical modeling and remote sensing”, Earth sci. res. j., vol. 23, no. 1, pp. 43–55, Jan. 2019.

MLA

Noyola-Medrano, C., J. A. Ramos-Leal, B. López-Alvarez, J. Morán-Ramírez, and R. M. Fuentes-Rivas. “Assessing the source and spatial distribution of chemical composition of a rift lake, using multivariate statistical, hydrogeochemical modeling and remote sensing”. Earth Sciences Research Journal, vol. 23, no. 1, Jan. 2019, pp. 43-55, doi:10.15446/esrj.v23n1.66429.

Turabian

Noyola-Medrano, Cristina, José Alfredo Ramos-Leal, Briseida López-Alvarez, Janet Morán-Ramírez, and Rosa María Fuentes-Rivas. “Assessing the source and spatial distribution of chemical composition of a rift lake, using multivariate statistical, hydrogeochemical modeling and remote sensing”. Earth Sciences Research Journal 23, no. 1 (January 1, 2019): 43–55. Accessed January 26, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/66429.

Vancouver

1.
Noyola-Medrano C, Ramos-Leal JA, López-Alvarez B, Morán-Ramírez J, Fuentes-Rivas RM. Assessing the source and spatial distribution of chemical composition of a rift lake, using multivariate statistical, hydrogeochemical modeling and remote sensing. Earth sci. res. j. [Internet]. 2019 Jan. 1 [cited 2025 Jan. 26];23(1):43-55. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/66429

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

631

Downloads

Download data is not yet available.