Published

2020-04-01

Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons.

Análisis de las propiedades físicas y químicas de suelos contaminados con hidrocarburos oleosos (petróleo).

DOI:

https://doi.org/10.15446/esrj.v24n2.76217

Keywords:

Contaminated Soil, Total Petroleum Hydrocarbons, Atterberg Limits, Density, Clay, Sand. (en)
suelo contaminado, hidrocarburos totales de petróleo, límites de Atterberg, densidad, arcilla, arena. (es)

Downloads

Authors

  • Samad Zahermand Department of Civil Engineering , Faculty of Civil Engineering, Islamic Azad University of Isfahan(Khorasgan), Iran
  • Mahmod Vafaeian Department of Civil Engineering , Faculty of Civil Engineering, Islamic Azad University of Isfahan(Khorasgan), Iran
  • Mohammad Hosein Bazyar Department of Civil Engineering, Yasouj University, Yasouj, Iran

This paper is focused on analyzing the engineering properties and geotechnical changes of the soil contaminated by petroleum hydrocarbons, compared to non-contaminated soil. Also, identifying the physical and chemical behaviors and the interaction mechanisms between soil and contaminants at the time of contamination is far-reaching. This study aims to investigate the effects of petroleum contaminants on Atterberg limits, cation-exchange capacity, electrical conductivity and acidity, maximum dry density, and optimum moisture content of clay soil compared to non-contaminated samples with similar geological conditions in Gachsaran petroleum refinery region. The significant effects of contaminants on clay soil include an increase in cation-exchange capacity and electrical conductivity, but a decrease in acidity compared to non-contaminated samples. The results of the Atterberg limit as a physical index of the soil showed an increase in the petroleum hydrocarbon concentration, which enhanced the plastic and liquid limits, but decreased the plasticity index. The results of compaction tests using water and oil fluids indicated that the concentration of petroleum hydrocarbons in sandy soil increased maximum dry density and decreased optimum moisture content. Moreover, in a soil sample with stable pollution levels, maximum dry density and optimum moisture content were higher and lower in the compaction test using water fluid compared to those in compaction tests using oil fluid, respectively. Finally, increasing the soil pollution level reduced the difference between maximum dry density and the optimum moisture content in the compaction test using water fluid compared to the same test using oil fluid.

El presente trabajo se enfoca en analizar las propiedades de ingeniería y los cambios geotécnicos de los suelos contaminados por hidrocarburos del petróleo comparados con suelos no contaminados. Tambien en identificar los comportamientos físicos y químicos y los mecanismos de interacción entre el suelo, los contaminantes y el alcance de estos. Este estudio busca investigar los efectos de los contaminantes de petróleo en los límites de Atterberg, en la capacidad de intercambio de cationes, la conductividad eléctrica y la acidez, la densidad seca máxima, el contenido óptimo de humedad en suelos arcillosos frente a muestras de suelo con condiciones geológicas similares en la refinería de petróleo de Gachsaran, Irán. Los efectos determinantes de los contaminantes en suelos arcillosos incluyen un incremento en la capacidad de intercambio de cationes y en la conductividad eléctrica, pero un decrecimiento en la acidez frente a las muestras no contaminadas. Los resultados de los límites de Atterberg como un índice físico del suelo muestran un incremento en la concentración de hidrocarburos de petróleo, lo que intensifica los límites plásticos y líquidos, pero reduce el índice de plasticidad. Los resultados de las evaluaciones de compactación al añadir agua y fluidos de crudo indican que la concentración de hidrocarbonos de petróleo en suelos arenosos incrementan la densidad seca máxima y reducen el contenido de humedad óptimo. Además, en una muestra de suelo con niveles de contaminación estables, la densidad seca máxima y el contenido óptimo de humedad registraron el mayor y el menor índice en la evaluación de compactación con agua comparado con las pruebas donde se utilizó crudo. Finalmente, al incrementar el nivel de contaminación del suelo se reduce la diferencia entre la densidad seca máxima y el contenido óptimo de humedad en la prueba de compactación cuando se usa agua comparado con la prueba donde se usa crudo.

References

Aiban, S. A. (1998). The effect of temperature on the engineering properties of oil-contaminated sand. Journal of Environmental International, 24(1–2), 153-161.

Al-Sanad, H. A., Eid, W. K., & Ismael, N. F. (1995). Geotechnical Properties of Oil-Contaminated Kuwaiti Sand. Journal of Geotechnical Engineering, 121(5), 407-412.

Al-Sanad, H. A., & Ismael, N. F. (1997). Aging Effects on Oil Contaminated Kuwaiti Sand. Journal of Geotechnical and Geoenvironmental Engineering, 123(3), 290-293.

American society for Testing and material, ASTM. (2000). Annual Book of ASTM standards. Sec 4, Vol. 04, 08, Philadelphia, Pa.

ASTM D422. (2000). Standard test methods for particle size analysis of soils. Annual Books of ASTM Standards.

ASTM D4318. (2000). Standard test method for liquid limit, plastic limit and plasticity index of soil. Annual Books of ASTM Standards.

ASTM D698. (2000). Standard test methods for laboratory compaction characteristic. Annual Books of ASTM Standard.

Bower, C. A., Reitemeier, R. F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73(4), 251–261.

Cook, E. E., Puri, V. K., & Shin, E. C. (1992). Geotechnical Characteristics Of Crude Oil-Contaminated Sands. The Second International Offshore and Polar Engineering Conference, San Francisco, California, USA.

Estabragh, A. R. Khatibi, M. & Javadi, A. A. (2016). Effect of Cement on Treatment of a Clay Soil Contaminated with Glycerol. Journal of Materials in Civil Engineering, 28(4).

Hutchinson, S. L., Schwab, A. P., & Banks, M. K. (2001). Phytoremediation of Aged Petroleum Sludge. Effect of Irrigation Techniques and Scheduling. Journal of Environmental Quality, 30(5), 1516-1522.

Jia, Y. G., Wu, Q., Shang, H., Yang, Zh. N., & Shan, H. X. (2011). The influence of oil contamination on the geotechnical properties of coastal sediments in the Yellow River Delta, China. Bulletin of Engineering Geology and the Environment, 70(3), 517-525.

Kaya, A., & Fang, H. Y. (2000). The effects of organic fluids on physicochemical parameters of fine-grained soils. Canadian Geotechnical Journal, 37(5), 943–950.

Kermani, M. J., & Ebadi, T. (2012). The effect of oil contamination on the geotechnical properties of fine-grained soils. Soil and Sediment Contamination: An International Journal, 21(5), 655-671.

Khamehchiyan, M., Charkhabi, A. H., & Tajik, M. (2007). Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering Geology, 89(3-4), 220-229.

Khoshneshin Langroodi, M., Yasrebi, S., & Mohamadie akbarabadi, M. (2010). Effect of oil pollution Parameters resistance of clay soil. 5th National Congress of Civil Engineering, Mashhad, Iran.

Lashkaripoor, G., Ghafoori, M., & Rajaie, F. (2010). Influence of oil contamination on mechanical properties of sandy, silty and clayey soils. The Fourth National Geological Conference of Payame Noor University (PNU), Mashhad, Iran.

Laurent, F., Cébron, A., Schwartz, C., & Leyval, C. (2012). Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere, 86(6), 659–664.

Meegoda, N. J., & Ratnaweera, P. (1994). Compressibility of contaminated fine grained soils. Geotechnical Testing Journal, 17, 101–112.

Nathanail, C. P., & Bardos, R. P. (2004). Reclamation of contaminated land. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.

Olgun M., & Yildiz, M. (2012). The Effects of Pore Fluids with Different Dielectric Constants on the Geotechnical Behaviour of Kaolinite. Arabian Journal for Science and Engineering, 37, 1833–1848.

Ouhadi, V. R., Yong, R. N. & Sedighi, M. (2006). Influence of Heavy Metal Contaminants at Variable pH Regimes on Rheological Behaviour of Bentonite. Applied Clay Science, 32(3-4), 217-231.

Rahman, Z. A., Hamzah, U., Taha, M. R., Ithnain, N. S., & Ahmad, N. (2010). Influence of Oil Contamination on Geotechnical Properties of Basaltic Residual Soil. American Journal of Applied Sciences, 7(7), 954-961.

Seybold, C. A., Elrashidi, M. A., & Engel, R. J. (2008). Linear regression models to estimate soil liquid limit and plasticity index from basic soil properties. Soil Science, 173(1), 25-34.

Shah, S. J., Shroff, A. V., Patel, J. V., Tiwari, K. C. & Ramakrishnan, D. (2003). Stabilization of fuel oil contamination soil-A case study. Geotechnical & Geological Engineering, 21, 415-427.

Sharma, H. D., & Reddy, K. R. (2004). Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies. New Jersey, NJ: John Wiley & Sons, 992 pp.

Shin, E. C., Lee, J. B., & Das, B. M. (1997). Geotechnical properties of crude oil-contaminated sand. The Seventh International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA.

Sivapulliah, P. V., & Sridharan, A. (1988). Effect of polluted water on the physico-chemical properties of clayey soils. In: Environmental Geotechnica, Balkema Press, Rotterdam.

Sparks, D. L., Alain, L. P., Helmke, P. A., Loeppert, R. H., Soltanpor, P. N., Tabatabai, M. A., Johnston, C. M., & Sumner, M. E. (1996). Method of soil Analysis. Part 3. Chemical Methods. American Society of Agronomy.

Sridharan, A., El-Shafei, A., & Miura, N. (2000). A study on the dominating mechanisms and parameters influencing the physical properties of Ariake clay. Lowland Technology International, 2(2), 55–70.

Stewart, D. I., Studds, P. G., & Cousens, T. W. (2003). The factors controlling the engineering properties of bentonite enhanced sand. Applied Clay Sciences, 23(1-4), 97-110.

Yong, R. N. (2000). Geoenvironmental engineering, contaminated soils, pollutant fate and mitigation. CRC Press, Boca Raton, 320 pp.

How to Cite

APA

Zahermand, S., Vafaeian, M. and Bazyar, M. H. (2020). Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons. Earth Sciences Research Journal, 24(2), 163–168. https://doi.org/10.15446/esrj.v24n2.76217

ACM

[1]
Zahermand, S., Vafaeian, M. and Bazyar, M.H. 2020. Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons. Earth Sciences Research Journal. 24, 2 (Apr. 2020), 163–168. DOI:https://doi.org/10.15446/esrj.v24n2.76217.

ACS

(1)
Zahermand, S.; Vafaeian, M.; Bazyar, M. H. Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons. Earth sci. res. j. 2020, 24, 163-168.

ABNT

ZAHERMAND, S.; VAFAEIAN, M.; BAZYAR, M. H. Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons. Earth Sciences Research Journal, [S. l.], v. 24, n. 2, p. 163–168, 2020. DOI: 10.15446/esrj.v24n2.76217. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/76217. Acesso em: 15 jul. 2024.

Chicago

Zahermand, Samad, Mahmod Vafaeian, and Mohammad Hosein Bazyar. 2020. “Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons”. Earth Sciences Research Journal 24 (2):163-68. https://doi.org/10.15446/esrj.v24n2.76217.

Harvard

Zahermand, S., Vafaeian, M. and Bazyar, M. H. (2020) “Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons”., Earth Sciences Research Journal, 24(2), pp. 163–168. doi: 10.15446/esrj.v24n2.76217.

IEEE

[1]
S. Zahermand, M. Vafaeian, and M. H. Bazyar, “Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons”., Earth sci. res. j., vol. 24, no. 2, pp. 163–168, Apr. 2020.

MLA

Zahermand, S., M. Vafaeian, and M. H. Bazyar. “Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons”. Earth Sciences Research Journal, vol. 24, no. 2, Apr. 2020, pp. 163-8, doi:10.15446/esrj.v24n2.76217.

Turabian

Zahermand, Samad, Mahmod Vafaeian, and Mohammad Hosein Bazyar. “Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons”. Earth Sciences Research Journal 24, no. 2 (April 1, 2020): 163–168. Accessed July 15, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/76217.

Vancouver

1.
Zahermand S, Vafaeian M, Bazyar MH. Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons. Earth sci. res. j. [Internet]. 2020 Apr. 1 [cited 2024 Jul. 15];24(2):163-8. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/76217

Download Citation

CrossRef Cited-by

CrossRef citations15

1. Anna Yurievna Stepanova, Evgeny Aleksandrovich Gladkov, Ekaterina Sergeevna Osipova, Olga Victorovna Gladkova, Dmitry Viktorovich Tereshonok. (2022). Bioremediation of Soil from Petroleum Contamination. Processes, 10(6), p.1224. https://doi.org/10.3390/pr10061224.

2. Xiaomin Hou, Cong Wang, Shoukun Dong. (2021). Effects of Planting Density of Spring Soybean on Canopy Photosynthetically Active Radiation and Yield in Northeast China. Journal of Biobased Materials and Bioenergy, 15(4), p.559. https://doi.org/10.1166/jbmb.2021.2085.

3. Adriana Muente, Isabel Cipriani-Ávila, Karina García-Villacís, Verónica Pinos-Veléz, Daniel Hidalgo-Lasso, Pablo Ruíz, Verónica Luna. (2022). Evaluation of the Use of Lime and Nanosilica for the Improvement of Clay Soil Structure and Degradation of Hydrocarbons. Pollutants, 2(4), p.422. https://doi.org/10.3390/pollutants2040028.

4. Rupshikha Patowary, Arundhuti Devi, Ashis K. Mukherjee. (2023). Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study. Environmental Science and Pollution Research, 30(30), p.74459. https://doi.org/10.1007/s11356-023-27698-4.

5. H. Chen, Y. Hao, S. L. Zhang, J. R. Pan, M. F. Lang, X. T. Guo. (2024). Vertical migration and variation of crude oil in soil around typical oilfields under natural leaching. International Journal of Environmental Science and Technology, 21(3), p.3073. https://doi.org/10.1007/s13762-023-05158-3.

6. Dalel Daâssi, Fatimah Qabil Almaghribi. (2022). Petroleum-contaminated soil: environmental occurrence and remediation strategies. 3 Biotech, 12(6) https://doi.org/10.1007/s13205-022-03198-z.

7. L. V. Bunіo, O. M. Tsvilynyuk. (2021). Influence of crude oil pollution on the content and electrophoretic spectrum of proteins in Carex hirta plants at the initial stages of vegetative development . Regulatory Mechanisms in Biosystems, 12(3), p.459. https://doi.org/10.15421/022163.

8. Marina V. Chugunova, Lyudmila G. Bakina, Natalya V. Mayachkina, Yulia M. Polyak, Alexander O. Gerasimov. (2022). Features of the processes of detoxification and self-restoration of oil-contaminated soils — a field study. Journal of Soils and Sediments, 22(12), p.3087. https://doi.org/10.1007/s11368-022-03272-2.

9. Sergey A. Lednev, Ivan N. Semenkov, Tatiana V. Koroleva. (2023). Phytotoxic Effects of Kerosene on Plants of Forest and Bog Phytocenoses of Southern Taiga. Forests, 14(5), p.873. https://doi.org/10.3390/f14050873.

10. Yu. P. Turov, M. Yu. Guznyaeva, D. A. Lazarev, Yu. Yu. Petrova, G. O. Zhdanova, D. I. Stom. (2022). Study of Sorption and Removal of Oil Hydrocarbons in Soil Samples. Eurasian Soil Science, 55(6), p.830. https://doi.org/10.1134/S1064229322060151.

11. Xiangguo Liu. (2021). Distribution characteristics of persistent organic pollutants in water environment based on evolutionary stabilization strategy. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06975-x.

12. Hamed Haghsheno, Mahyar Arabani. (2022). Geotechnical properties of oil-polluted soil: a review. Environmental Science and Pollution Research, 29(22), p.32670. https://doi.org/10.1007/s11356-022-19418-1.

13. Russell Khaled Mohsen, Hazim Aziz Al-Robai. (2023). Pollution Effect of Used Engine Oil on Chemical Properties and some Heavy Metals of Sandy Soil. IOP Conference Series: Earth and Environmental Science, 1262(8), p.082060. https://doi.org/10.1088/1755-1315/1262/8/082060.

14. Kannikka Behl, Alka Devi, Yamini Yadav, Pranita Jaiswal. (2024). Cyanobacteria. , p.341. https://doi.org/10.1016/B978-0-443-13231-5.00013-1.

15. S. A. Ganiyu, O. T. Olurin, D. O. Morakinyo, M. O. Olobadola, J. A. Rabiu. (2022). Physico-chemical and thermal characteristics of sandy loam soils contaminated by single and mixed pollutants (mineral and vegetable oils). Environmental Monitoring and Assessment, 194(6) https://doi.org/10.1007/s10661-022-10126-4.

Dimensions

PlumX

Article abstract page views

1245

Downloads

Download data is not yet available.