Published

2022-05-11

The effects of water acidity and engineering properties on rock durability

Efectos de la acidez del agua y las propiedades ingenieriles en la durabilidad de la roca

DOI:

https://doi.org/10.15446/esrj.v26n1.76468

Keywords:

Rock, Physical properties, Mechanical properties, Slake-durability, pH (en)
Rocas; propiedades físicas; propiedades mecánicas; índice de durabilidad; (es)

Downloads

Authors

Fifteen sedimentary rock samples of four rock types including sandstone, limestone, travertine and conglomerate were collected from Damghan area, northern Iran. Mineralogical studies and laboratory experiments were performed to assess physical properties, Schmidt hardness, P-wave velocity, slake-durability index, uniaxial compressive, point load, Brazilian tensile and block punch strengths of the rocks. The studied rock samples are mainly composed of quartz, calcite and dolomite with different textures. The slake-durability test was carried out up to ten cycles in fluids with different pH. The utilized test fluids were natural water with pH of 7 and sulfuric acid solutions with pH of 5.5 and 4. Based on the results, the slake-durability index is affected by pH of the test fluids. Also, the different rock types had distinctive slaking behaviors. Decreasing rate of slake-durability index at initial cycles is higher than the end cycles the same as weight loss rate of the specimens. Regression analyses showed that the evaluated parameters are correlated to the slake-durability index. In other words, the slake-durability index of the studied rock samples is greatly affected by their mineral composition, texture, physical properties such as porosity and closely related to strength parameters of the rocks. This led to extraction of empirical equations for determining essential characteristics of the rocks from the slake-durability index.

Para este trabajo se recolectaron quince muestras tipo sedimentarias de cuatro clases de rocas, donde se incluyen areniscas, calizas, travertinos y conglomerados, en el área Damghan, en el norte de Irán. Estudios mineralógicos y experimentos de laboratorio se realizaron para medir las propiedades físicas de las rocas, el índice de dureza de Schmidt, la onda de presión, el índice de durabilidad, el de compresión uniaxial, el punto de carga, la prueba brasileña de tracción y la resistencia de golpe de bloque. Las muestras de roca estudiadas se componen principalmente de cuarzo, calcita y dolomita con diferentes texturas. El índice de durabilidad se realizó en diez ciclos con fluidos de diferente alcalinidad. Los fluidos utilizados para el índice fueron agua natural con pH de siete y soluciones de ácido sulfúrico con pH 5.5 y 4. Con base en los resultados, el índice de durabilidad se afecta por el pH de los fluidos del ensayo. También los tipos de las rocas tienen diferente comportamiento en la durabilidad. La caida en el índice de la durabilidad de los ciclos iniciales es mayor que en los ciclos finales. Los análisis de regresión muestran que los parámetros evaluados están correlacionados con el índice de durabilidad. En otras palabras, el índice de durabilidad de las muestras de rocas estudiadas está ampliamente afectado por su composición mineral, textura, y propiedades físicas como la porosidad, y está relacionado de cerca con los parámetros de resistencia de las rocas. Estos resultados preliminares condujeron al diseño de ecuaciones empíricas para determinar las características esenciales de las rocas en el índice de durabilidad.

References

Arman, H. (2021). Correlation of uniaxial compressive strength with indirect tensile strength (Brazilian) and 2nd cycle of slake durability index for evaporitic rocks. Geotechnical and Geological Engineering, 39, 1583–1590. https://doi.org/10.1007/s10706-020-01578-x DOI: https://doi.org/10.1007/s10706-020-01578-x

ASTM. (1990). Standard test method for slake-durability of shales and similar weak rocks (D4644). Annual Book of ASTM Standards, vol. 4.08. ASTM, Philadelphia. 863–865.

ASTM. (1995). Standard test method for unconfined compressive strength of intact rock core specimens. ASTM standards on disc 04.08; Designation, D2938.

ASTM. (1996). Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. Designation, D2845–D2895.

ASTM. (2001a). Standard method for determination of the point load strength index of rock. ASTM standards on disc 04.08. Designation, D5731.

ASTM. (2001b). Standard test method for splitting tensile strength of intact rock core specimens. ASTM standards on disc 04.08. Designation, D3967.

ASTM. (2001c). Standard test method for determination of rock hardness by rebound hammer method. ASTM standards on disc 04.09. Designation, D5873-D5880.

ASTM. (2009). Standard guide for petrographic examination of dimension Stone (C1721). Book Standards. vol. 04.07.

Bell, F. G. (1992). The Durability of Sandstone as Building Stone, Especially in Urban Environments. Environmental and Engineering Geoscience, 29(1), 49–60. https://doi.org/10.2113/gseegeosci.xxix.1.49 DOI: https://doi.org/10.2113/gseegeosci.xxix.1.49

Broch, E. & Franklin, J. A. (1972). The point load strength test. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 9, 669–697. https://doi.org/10.1016/0148-9062(72)90030-7 DOI: https://doi.org/10.1016/0148-9062(72)90030-7

Crosta, G. (1998). Slake durability vs ultrasonic treatment for rock durability determinations. International Journal of Rock Mechanics and Mining Sciences, 35(6), 815–824. DOI: https://doi.org/10.1016/S0148-9062(98)00006-0

Dhakal, G., Yoneda, T., Kato, M., & Kaneko, K. (2002). Slake durability and mineralogical properties of some pyroclastic and sedimentary rocks. Engineering Geology, 65, 31–45. https://doi.org/10.1016/S0013-7952(01)00101-6 DOI: https://doi.org/10.1016/S0013-7952(01)00101-6

Fereidooni, D. (2016). Determination of the geotechnical characteristics of hornfelsic rocks with a particular emphasis on the correlation between physical and mechanical properties. Rock Mechanics and Rock Engineering, 49(7), 2595–2608. https://doi.org/10.1007/s00603-016-0930-3 DOI: https://doi.org/10.1007/s00603-016-0930-3

Fereidooni, D., & Khajevand, R. (2018). Correlations between slake-durability index and engineering properties of some travertine samples under wetting-drying cycles. Geotechnical and Geological Engineering, 36, 1071–1089. https://doi.org/10.1007/s10706-017-0376-8 DOI: https://doi.org/10.1007/s10706-017-0376-8

Fereidooni, D., & Khajevand, R. (2019). Utilization of the accelerated weathering test method for evaluating the durability of sedimentary rocks. Bulletin of Engineering Geology and the Environment, 78, 2697–2716. https://doi.org/10.1007/s10064-018-1267-9 DOI: https://doi.org/10.1007/s10064-018-1267-9

Fereidooni, D., Khanlari, G. R., & Heidari, M. (2015). Assessment of a modified rock mass classification system for rock slope stability analysis in the Q-system. Earth Science Research Journal, 19(2), 147–152. https://doi.org/10.15446/esrj.v19n2.49127 DOI: https://doi.org/10.15446/esrj.v19n2.49127

Fereidooni, D., Khanlari, G. R., Heidari, M., Sepahi-Gero, A. A., & Kolahi-Azar, A. P. (2016). Assessment of inherent anisotropy and confining pressure influences on mechanical behavior of anisotropic foliated rocks under triaxial compression. Rock Mechanics and Rock Engineering, 49(6), 2155–2163. https://doi.org/10.1007/s00603-015-0814-y DOI: https://doi.org/10.1007/s00603-015-0814-y

Franklin J. A., & Chandra, A. (1972). The slake durability test. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 9(1), 325–341. https://doi.org/10.1016/0148-9062(72)90001-0 DOI: https://doi.org/10.1016/0148-9062(72)90001-0

Fuenkajorn, K. (2011). Experimental assessment of long-term durability of some weak rocks. Bulletin of Engineering Geology and the Environment, 70(2), 203–211. https://doi.org/10.1007/s10064-010-0297-8 DOI: https://doi.org/10.1007/s10064-010-0297-8

Gamble, J. C. (1971). Durability–plasticity classification of shales and other argillaceous rocks. Ph.D. Thesis, University of Illinois, Urabana.

Gautam T. P., & Shakoor, A. (2016). Comparing the slaking of clay-bearing rocks under laboratory conditions to slaking under natural climatic conditions. Rock Mechanics and Rock Engineering, 49, 19–31. https://doi.org/10.1007/s00603-015-0729-7 DOI: https://doi.org/10.1007/s00603-015-0729-7

Ghobadi, M. H., & Babazadeh, R. (2015). An investigation on the effect of accelerated weathering on strength and durability of Tertiary sandstones (Qazvin province, Iran), Environmental Earth Sciences, 73(8), 4237–4250. https://doi.org/10.1007/s12665-014-3708-5 DOI: https://doi.org/10.1007/s12665-014-3708-5

Ghobadi, M. H., & Fereidooni, D. (2015). Effect of mineralogy on durability and strength of hornfelsic rocks under acidic rainfall in urban areas. Journal of Engineering Geology, 9(2), 2765– 2788. DOI: 10.18869/acadpub.jeg.9.2.2765 DOI: https://doi.org/10.18869/acadpub.jeg.9.2.2765

Ghobadi, M. H., & Momeni, A. A. (2011). Assessment of granitic rocks degradability susceptive to acid solutions in urban area. Environmental Earth Sciences, 65, 753–760. https://doi.org/10.1007/s12665-010-0895-6 DOI: https://doi.org/10.1007/s12665-010-0895-6

Ghobadi, M. H., & Mousavi, S. (2014). The effect of pH and salty solutions on durability of sandstones of the Aghajari Formation in Khouzestan province, southwest of Iran. Arabian Journal of Geosciences, 7, 641–653. https://doi.org/10.1007/s12517-012-0741-0 DOI: https://doi.org/10.1007/s12517-012-0741-0

Gokceoglu, C. (1997). The approaches to overcome the difficulties encountered in the engineering classification of claybearing, densely jointed and weak rock masses. PhD Thesis, Hacettepe University, Geological Engineering Department (in Turkish).

Gokceoglu, C., Ulusay, R., & Sonmez, H. (2000). Factors affecting the durability of selected weak and clay-bearing rocks from Turkey, with particular emphasis on the influence of the number of drying and wetting cycles. Engineering Geology, 57, 215–237. https://doi.org/10.1016/S0013-7952(00)00031-4 DOI: https://doi.org/10.1016/S0013-7952(00)00031-4

Gupta, V., & Ahmed, I. (2007). The effect of pH of water and mineralogical properties on the slake durability (degradability) of different rocks from the Lesser Himalaya, India. Engineering Geology, l 95, 79–87. https://doi.org/10.1016/j.enggeo.2007.09.004 DOI: https://doi.org/10.1016/j.enggeo.2007.09.004

Heidari, M., Rafiei, B., Mohebbi, Y., & Torabi-Kaveh, M. (2015). Assessing the behavior of clay-bearing rocks using static and dynamic slaking indices. Geotechnical and Geological Engineering, 33(4), 1017–1030. https://doi.org/10.1007/s10706-015-9884-6 DOI: https://doi.org/10.1007/s10706-015-9884-6

IAEG. (1979). Classification of rocks and soils for engineering geological mapping. Part 1: Rock and soil materials. Bulletin of the International Association of Engineering Geology, 19, 364–371. https://doi.org/10.1007/BF02600503 DOI: https://doi.org/10.1007/BF02600503

ISRM (1978). Suggested methods for determining tensile strength of rock materials. International Journal of Rock Mechanics and Mining Sciences, 15(3), 99–103. http://dx.doi.org/10.1016/0148-9062(78)90003-7 DOI: https://doi.org/10.1016/0148-9062(78)90003-7

ISRM. (1979). Suggested method for determination of the slake durability index. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 16, 154–156.

ISRM. (1979). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 16, 135–140. DOI: https://doi.org/10.1016/0148-9062(79)91451-7

ISRM. (1981). Suggested methods for determining hardness and abrasiveness of rocks. Part 3. Commission on standardization of laboratory and field tests, 101–112.

ISRM. (1985). Suggested method for determining point load strength: ISRM Comm on testing methods. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 22(4), 112. DOI: https://doi.org/10.1016/0148-9062(85)92985-7

ISRM. (2007). The Blue Book: The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. 1974–2006. Compilation Arranged by the ISRM Turkish National Group, Ankara, Turkey, R. Ulusay and J. A. Hudson, Eds., Kazan Offset Press, Ankara.

Kahraman, S., Fener M. & Gunaydin, O. (2017). Estimating the uniaxial compressive strength of pyroclastic rocks from the slake durability index. Bulletin of Engineering Geology and the Environment, 76(3), 1107–1115. https://doi.org/10.1007/s10064-016-0893-3 DOI: https://doi.org/10.1007/s10064-016-0893-3

Kayabali, K., Beyaz, T. & Kolay, E. (2006). The effect of the pH of the testing liquid on the slake durability of gypsum. Bulletin Engineering Geology and the Environment, 65, 65–71. https://doi.org/10.1007/s10064-005-0027-9 DOI: https://doi.org/10.1007/s10064-005-0027-9

Keaton, J. R. (2013). Estimating Erodible Rock Durability and Geotechnical Parameters for Scour Analysis. Environmental and Engineering Geoscience, 19(4), 319–343. https://doi.org/10.2113/gseegeosci.19.4.319 DOI: https://doi.org/10.2113/gseegeosci.19.4.319

Khajevand, R. (2021). Evaluating the influence of petrographic and textural characteristics on geotechnical properties of some carbonate rock samples by empirical equations. Innovative Infrastructure Solutions, 6, 113. https://doi.org/10.1007/s41062-021-00498-w DOI: https://doi.org/10.1007/s41062-021-00498-w

Khanlari, G. R., Heidari, M., Sepahi-Gero, A. A., & Fereidooni, D. (2014a). Determination of geotechnical properties of anisotropic rocks using some index tests. Geotechnical Testing Journal, 37(2), 1–13. DOI: 10.1520/GTJ20130078 DOI: https://doi.org/10.1520/GTJ20130078

Khanlari, G. R., Heidari, M., Sepahi-Gero, A. A., & Fereidooni, D. (2014b). Quantification of strength anisotropy of metamorphic rocks of the Hamedan Province, Iran, as determined from Cylindrical Punch, Point Load and Brazilian tests. Engineering Geology, 169, 80–90. https://doi.org/10.1016/j.enggeo.2013.11.014 DOI: https://doi.org/10.1016/j.enggeo.2013.11.014

Kolay, E., & Kayabali, K. (2006). Investigation of the effect of aggregate shape and surface roughness on the slake durability index using the fractal dimension approach. Eng Geol. 86, 271–284. https://doi.org/10.1016/j.enggeo.2006.05.007 DOI: https://doi.org/10.1016/j.enggeo.2006.05.007

Kolay, E., Kayabali, K., & Tasdemir, Y. (2010). Modeling the slake durability index using regression analysis, artificial neural networks and adaptive neuro-fuzzy methods. Bulletin of Engineering Geology and the Environment, 69, 275–286. https://doi.org/10.1007/s10064-009-0259-1 DOI: https://doi.org/10.1007/s10064-009-0259-1

Koncagul, E. C., & Santi, P. M. (1999). Predicting the unconfined compressive strength of the Breathitt shale using slake durability, Shore hardness and rock structural properties. International Journal of Rock Mechanics and Mining Sciences, 36(2), 139–153. https://doi.org/10.1016/S0148-9062(98)00174-0 DOI: https://doi.org/10.1016/S0148-9062(98)00174-0

Lu, P., Cai, S., Yang, P., Rosenbaum, M. S. (2005). Disintegration characteristics of weak rocks using the Grey Prediction technique. Geotechnical & Geological Engineering, 23, 131–139. https://doi.org/10.1007/s10706-003-5969-8 DOI: https://doi.org/10.1007/s10706-003-5969-8

Momeni, A., Hashemi, S. S., Khanlari, G. R., & Heidari, M. (2017). The effect of weathering on durability and deformability properties of granitoid rocks. Bulletin of Engineering Geology and the Environment, 76(3), 1037–1049. https://doi.org/10.1007/s10064-016-0999-7 DOI: https://doi.org/10.1007/s10064-016-0999-7

Monticelli, J. P., Ribeiro, R., & Futai, M. (2020). Relationship between durability index and uniaxial compressive strength of a gneissic rock at different weathering grades. Bulletin of Engineering Geology and the Environment, 79(3), 1381–1397. https://doi.org/10.1007/s10064-019-01625-9 DOI: https://doi.org/10.1007/s10064-019-01625-9

Moon, V. G., & Beattie, A. G. (1995). Textural and micro structural influence on the durability of Waikato coal measures mud rocks. Quarterly Journal of Engineering Geology and Hydrogeology, 28, 303–312. https://doi.org/10.1144/GSL.QJEGH.1995.028.P3.08 DOI: https://doi.org/10.1144/GSL.QJEGH.1995.028.P3.08

Moradian, Z. A., Ghazvinian, A. H., Ahmadi, M., & Behnia, M. (2010). Predicting slake durability index of soft sandstone using indirect tests. International Journal of Rock Mechanics and Mining Sciences, 47, 666–671. https://doi.org/10.1016/j.ijrmms.2010.02.001 DOI: https://doi.org/10.1016/j.ijrmms.2010.02.001

Nicholson, D. (2001). Pore properties as indicators of breakdown mechanisms in experimentally weathered limestone. Earth Surf Process Land, 26, 819–838. https://doi.org/10.1002/esp.228 DOI: https://doi.org/10.1002/esp.228

Onodera, T. F., Yosinaka, R., & Oda, M. (1974). Weathering and its relation to mechanical properties of granite. In: Proceedings of the 3rd congress of ISRM, Denver, Leiden. 2, 71–78.

Sadisun, I. A., Shimada, H., Ichinose, M., & Matsui, K. (2005). Study on the physical disintegration characteristics of Subang claystone subjected to a modified slaking index test. Geotechnical & Geological Engineering, 23, 199–218. https://doi.org/10.1007/s10706-003-6112-6 DOI: https://doi.org/10.1007/s10706-003-6112-6

Sebastian Bryson, L., Gomez Gutierrez, I. C., & Hopkins, T. C. (2012). Development of a new durability index for compacted shale. Engineering Geology, 139–140, 66–75. https://doi.org/10.1016/j.enggeo.2012.04.011 DOI: https://doi.org/10.1016/j.enggeo.2012.04.011

Selen L., Panthi, K. K., & Vistnes, G. (2020). An analysis on the slaking and disintegration extent of weak rock mass of the water tunnels for hydropower project using modified slake durability test. Bulletin of Engineering Geology and the Environment, 79(4), 1919–37. https://doi.org/10.1007/s10064-019-01656-2 DOI: https://doi.org/10.1007/s10064-019-01656-2

Sharma, P. K., & Singh, T. N. (2008). A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment, 67, 17–22. https://doi.org/10.1007/s10064-007-0109-y DOI: https://doi.org/10.1007/s10064-007-0109-y

Singh, T. N., Verma, A. K., Singh, V., & Sahu, A. (2005). Slake durability study of shaly rock and its predictions. Environmental Geology, 47, 246–253. https://doi.org/10.1007/s00254-004-1150-9 DOI: https://doi.org/10.1007/s00254-004-1150-9

Singh, T., Sharma, P., & Khandelwal, M. (2006). Effect of pH on the Physico-mechanical properties of marble. Bulletin of Engineering Geology and the Environment, 66(1), 81–87. https://doi.org/10.1007/s10064-006-0047-0 DOI: https://doi.org/10.1007/s10064-006-0047-0

Tasdemir, Y., Kolay, E., & Kayabali, K. (2013). Comparison of three artificial neural network approaches for estimating of slake durability index. Environmental Earth Sciences, 68, 23–31. https://doi.org/10.1007/s12665-012-1702-3 DOI: https://doi.org/10.1007/s12665-012-1702-3

Taylor, R. K. (1988). Coal measures mudrocks: composition, classification and weathering processes. Quarterly Journal of Engineering Geology, 21, 85–99. https://doi.org/10.1144/GSL.QJEG.1988.021.01.06 DOI: https://doi.org/10.1144/GSL.QJEG.1988.021.01.06

Ulusay, R., Gokceoglu, C., & Sulukcu, S. (2001). Draft ISRM suggested method for determining block punch strength index (BPI). International Journal of Rock Mechanics and Mining Sciences, 38, 1113–1119. https://doi.org/10.1016/S1365-1609(01)00078-8 DOI: https://doi.org/10.1016/S1365-1609(01)00078-8

Yagiz, S. (2011). Correlation between slake durability and rock properties for some carbonate rocks. Bulletin of Engineering Geology and the Environment, 70, 377–383. https://doi.org/10.1007/s10064-010-0317-8 DOI: https://doi.org/10.1007/s10064-010-0317-8

Yavuz, A. B. (2012). Durability assessment of the Alaçatı tuff (Izmir) in western Turkey. Environmental Earth Sciences, 67(7), 1909–1925. https://doi.org/10.1007/s12665-012-1632-0 DOI: https://doi.org/10.1007/s12665-012-1632-0

Yavuz, A. B., Kaputoglu, S. A., Çolak, M., & Tanyu, B. F. (2017). Durability assessments of rare green andesites widely used as building stones in Buca (Izmir), Turkey. Environmental Earth Sciences, 76, 211–216. https://doi.org/10.1007/s12665-017-6531-y DOI: https://doi.org/10.1007/s12665-017-6531-y

Zhou, C. Y., Tan, X. S., Deng, Y. M., Zhang, L. M., & Wang, J. H. (2005). Research on softening micro-mechanism of special soft rocks. Chinese Journal of Rock Mechanics and Engineering, 24(3), 394–400.

How to Cite

APA

Khajevand, R. and Fereidooni, D. (2022). The effects of water acidity and engineering properties on rock durability. Earth Sciences Research Journal, 26(1), 67–79. https://doi.org/10.15446/esrj.v26n1.76468

ACM

[1]
Khajevand, R. and Fereidooni, D. 2022. The effects of water acidity and engineering properties on rock durability. Earth Sciences Research Journal. 26, 1 (May 2022), 67–79. DOI:https://doi.org/10.15446/esrj.v26n1.76468.

ACS

(1)
Khajevand, R.; Fereidooni, D. The effects of water acidity and engineering properties on rock durability. Earth sci. res. j. 2022, 26, 67-79.

ABNT

KHAJEVAND, R.; FEREIDOONI, D. The effects of water acidity and engineering properties on rock durability. Earth Sciences Research Journal, [S. l.], v. 26, n. 1, p. 67–79, 2022. DOI: 10.15446/esrj.v26n1.76468. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/76468. Acesso em: 28 mar. 2025.

Chicago

Khajevand, Reza, and Davood Fereidooni. 2022. “The effects of water acidity and engineering properties on rock durability”. Earth Sciences Research Journal 26 (1):67-79. https://doi.org/10.15446/esrj.v26n1.76468.

Harvard

Khajevand, R. and Fereidooni, D. (2022) “The effects of water acidity and engineering properties on rock durability”, Earth Sciences Research Journal, 26(1), pp. 67–79. doi: 10.15446/esrj.v26n1.76468.

IEEE

[1]
R. Khajevand and D. Fereidooni, “The effects of water acidity and engineering properties on rock durability”, Earth sci. res. j., vol. 26, no. 1, pp. 67–79, May 2022.

MLA

Khajevand, R., and D. Fereidooni. “The effects of water acidity and engineering properties on rock durability”. Earth Sciences Research Journal, vol. 26, no. 1, May 2022, pp. 67-79, doi:10.15446/esrj.v26n1.76468.

Turabian

Khajevand, Reza, and Davood Fereidooni. “The effects of water acidity and engineering properties on rock durability”. Earth Sciences Research Journal 26, no. 1 (May 11, 2022): 67–79. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/76468.

Vancouver

1.
Khajevand R, Fereidooni D. The effects of water acidity and engineering properties on rock durability. Earth sci. res. j. [Internet]. 2022 May 11 [cited 2025 Mar. 28];26(1):67-79. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/76468

Download Citation

CrossRef Cited-by

CrossRef citations11

1. Fatin Nadhirah Ahmad Pauzi, Mohd Ashraf Mohamad Ismail, Mazlina Razali, Nirandoal Cheng, Kensuke Date, Yasuhiro Yokota. (2024). Enhancing weathered slope stability assessment through the integration of slake durability index, elastic modulus of knocking ball, and electrical resistivity tomography. Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-024-35143-3.

2. Amin Jamshidi. (2023). Slake durability evaluation of granitic rocks under dry conditions and slaking solution and its prediction using petrographic and strength characteristics. Bulletin of Engineering Geology and the Environment, 82(4) https://doi.org/10.1007/s10064-023-03134-2.

3. Lekan Olatayo Afolagboye, Olubunmi Oluwadare Owoyemi, Oluwatoyin Olagoke Akinola. (2023). Effect of pH Condition and Different Solution on the Slake Durability of Granitic Rocks. Geotechnical and Geological Engineering, 41(2), p.897. https://doi.org/10.1007/s10706-022-02312-5.

4. Amin Jamshidi, Mostafa Sedaghatnia. (2023). The Slake Durability of Argillaceous and Non-argillaceous Rocks: Insights From Effects of the Wetting–Drying and Rock Lumps Abrasion. Rock Mechanics and Rock Engineering, 56(7), p.5115. https://doi.org/10.1007/s00603-023-03318-y.

5. Samira Danaei, Davood Fereidooni. (2023). On the importance of specimen’s geometric shape effects on the slake-durability index of limestones and grain size distribution of the sediment particles obtained during the test. Construction and Building Materials, 394, p.132205. https://doi.org/10.1016/j.conbuildmat.2023.132205.

6. Meiqian Wang, Wenlian Liu, Haiming Liu, Wei Xu. (2024). Development of empirical equations between uniaxial compressive strength and point load index: a case study for sandy dolomite. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-77169-0.

7. Reza Khajevand. (2023). Prediction of the Uniaxial Compressive Strength of Rocks by Soft Computing Approaches. Geotechnical and Geological Engineering, 41(6), p.3549. https://doi.org/10.1007/s10706-023-02473-x.

8. Reza Khajevand. (2023). Estimating Geotechnical Properties of Sedimentary Rocks Based on Physical Parameters and Ultrasonic P-Wave Velocity Using Statistical Methods and Soft Computing Approaches. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(6), p.3785. https://doi.org/10.1007/s40996-023-01148-0.

9. Javid Hussain, Tehseen Zafar, Xiaodong Fu, Nafees Ali, Jian Chen, Fabrizio Frontalini, Jabir Hussain, Xiao Lina, George Kontakiotis, Olga Koumoutsakou. (2024). Petrological controls on the engineering properties of carbonate aggregates through a machine learning approach. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-83476-3.

10. Shuja Ullah, Nazir Ur Rehman, Abdul Rahim Asif, Rizwan Ullah, Liaqat Ali, Muhammad Rizwan, Faheem Ahmed, Tanzeel Ur Rehman. (2024). Engineering properties assessment and aggregate suitability of the jurassic and eocene limestone: a case study from the Upper Indus Basin, Pakistan. Carbonates and Evaporites, 39(4) https://doi.org/10.1007/s13146-024-01026-4.

11. Cairui Xu, Xinyu Zhang, Jiuhong Yu, Kang Hou, Ahmad Rastegarnia, Sajjad Gholipour. (2025). The effect of mineralogical, mechanical, physical, and dynamic properties on rock brittleness using statistical and soft computing methods. Earth Science Informatics, 18(1) https://doi.org/10.1007/s12145-024-01655-2.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 11
  • Captures
  • Mendeley - Readers: 12

Article abstract page views

359

Downloads