Published

2020-04-01

Characteristics and Numerical Runout Modeling Analysis of the Xinmo Landslide in Sichuan, China

Características y análisis del modelado numérico del deslizamiento de tierra en Xinmo, provincia de Sichuan, China

DOI:

https://doi.org/10.15446/esrj.v24n2.78990

Keywords:

Ridge-top landslide, avalanche debris, Dynamic analysis, DAN-W model. (en)
deslizamiento de tierra, avalancha de detritos, análisis de dinámicas, modelo DAN-W (es)

Downloads

Authors

  • Longwei Yang Chang’an University
  • Wenpei Wang China Institute of Geo-Environment Monitoring
  • Nan Zhang China Institute of Geo-Environment Monitoring
  • Yunjie Wei China Institute of Geo-Environment Monitoring

A catastrophic landslide hit Mount Fugui, Diexi Township, Mao County, Sichuan Province at 05:38:58 on June 24, 2017. This landslide buried Xinmo village, caused 83 deaths and resulted in enormous loss to people’s lives and properties. The Xinmo landslide was an earthquake-induced shattered mountain formed in the epicenter zone of the 1933 Ms7.5 Diexi earthquake (with an intensity of level X) and the strong motion zone of the Ms8.0 Wenchuan earthquake (with an intensity of level IX).The landslide mass cut out and slid from a high position, loaded continuously and accumulated at the top of the slope body. Subsequently, the landslide mass was transformed into avalanche debris, which clogged Songpinggou and thus formed a landslide dam, indicating a typical chain disaster of avalanche debris triggered by a ridge-top landslide. The total volume, elevation difference and horizontal distance of the landslide were 1637.6×104m3, 1200 m and 2800m, respectively. The authors of this study identified the disaster-formation mechanism of the Xinmo Landslide based on a field geological survey, remote sensing satellites and the other means. The authors analyzed the disaster characteristics of the landslide source zone, avalanche debris zone and accumulation zone, numerically simulated and comparatively studied the whole process of the Xinmo Landslide movement using DAN-W, i.e., dynamic landslide software, and multiple groups of rheological models. The research findings indicated that the friction model was able to favorably simulate the movement characteristics of various phases of the Xinmo Landslide; this landslide lasted approximately 120 s and had a maximum velocity of movement of 74 m/s. As a result, the friction model and its parameters can be used in similar studies on dynamic disaster effects of ridge-top rock landslides.

Un deslizamiento de tierra catastrófico afectó el Monte Fugui, de la localidad Diexi, en el condado Mao de la provincia china de Sichuan, a las 05:38:58 hora local del 24 de junio de 2017. Este deslizamiento enterró la población de Xinmo, causó 83 muertos y significó enormes pérdidas de propiedades. La masa del deslizamiento se desprendió en lo alto de la montaña, se continuó cargando y se acumuló en la parte alta de la pendiente. Seguidamente, la masa del deslizamiento se transformó en una avalancha de detritos. Esta fue una cadena típica de un desastre ocasionado por una avalancha de detritos que comenzó por un deslizamiento en lo alto de la montañana. El volumen total, la diferencia de elevación y la distancia horizontal del deslizamiento fueron de 1637.6 × 104 m3, 1200 m, and 2800 m. En este trabajo se identificó el mecanismo de formación del deslizamiento de Xinmo con base en un estudio de campo geológico y con el apoyo de satélites de teledetección. Los autores simularon numéricamente las características del desastre en la zona fuente, en la zona de la avalancha y en la zona de acumulación. Todo el proceso del deslizamiento de Xinmo fue estudiado comparativamente con el programa DAN-W, que analiza dinámicas de deslizamiento, y múltiples modelos reológicos. Los resultados del estudio indican que el modelo friccional simuló favorablemente las características del movimiento en varias fases del deslizamiento de Xinmo. Este movimiento duró por lo menos 120 segundos, y tuvo una velocidad máxima de movimiento de 74 m/s. Además, el modelo friccional y sus parámetros se pueden usar en estudios similares para investigar los efectos dinámicos de un movimiento de tierra en la parte alta de una montaña.  

References

Aaron, J., Hungr, O., Stark, T. D., & Baghdady, A. K. (2017). Oso, Washington, Landslide of March 22, 2014: Dynamic Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 143(9), 05017005.

Althuwaynee, O. F., Pradhan, B., Park, H.-J., & Lee, J. H. (2014). A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides, 11(6), 1063–1078.

Catane, S. G., Cabria, H. B., Tomarong, C. P., Saturay, R. M., Zarco, M. A. H., & Pioquinto, W. C. (2006). Catastrophic rockslide-debris avalanche at St. Bernard, Southern Leyte, Philippines. Landslides, 4(1), 85–90.

Chen, K. T., & Wu, J. H. (2018). Simulating the failure process of the Xinmo landslide using discontinuous deformation analysis. Engineering Geology, 239, 269-281.

Chen, X., Du, F. X., Du, Y. B., & Jiang, L. W. (2015). Research on the Major Gravity Geological Disasters Distribution at Upper Minjiang River Valley. Journal of Railway Engineering Society, 8, 20-24 (in Chinese).

Cheng, G., Wang, X., He, X., Fan, J., & Fan, J. (2008). Outburst risk of barrier lakes in Sichuan, China. Journal of Mountain Science, 5(3), 189–193.

Evans, S. G., Guthrie, R. H., Roberts, N. J., & Bishop, N. F. (2007). The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain. Natural Hazards and Earth System Sciences, 7(1), 89–101.

Fan, X., Juang, C. H., Wasowski, J., Huang, R., Xu, Q., Scaringi, G., van Westen, c. J., & Havenith, H.-B. (2018). What we have learned from the 2008 Wenchuan Earthquake and its aftermath: A decade of research and challenges. Engineering Geology, 241, 25–32.

Federico, F., & Cesali, C. (2017). Coupled Effects of Pore-Water Pressure Evolution, Slope Curvature, and Mass Variation on the Kinematics of Rapidly Sliding Fine-Grained Materials. International Journal of Geomechanics, 17(10), 04017088. doi:10.1061/(asce)gm.1943-5622.0000976.

Gao, Y., Li, B., Gao, H., Chen, L., & Wang, Y. (2020). Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: a case study of the Shuicheng “7.23”landslide in Guizhou, China. Landslides. doi:10.1007/s10346-020-01377-8 .

Huang, D., Zhong, Z., & Gu, D. (2019). Experimental investigation on the failure mechanism of a rock landslide controlled by a steep-gentle discontinuity pair. Journal of Mountain Science, 16(6), 1258–1274.

Huang, R. Q. (2009). Some catastrophic landslides since the twentieth century in the southwest of China. Landslides, 6(1), 69–81.

Hu, W., Scaringi, G., Xu, Q., & Huang, R. Q. (2018). Acoustic emissions and micro-seismicity in granular slopes prior to failure and flow-like motion: The potential for early warning. Geophysical Research Letters, 45(19), 10406-10415.

Hungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32(4), 610–623.

Hungr, O., & Evans, S. G. (1996). Rock avalanche runout prediction using a dynamic model. Proceedings of 7th International Symposium on Landslides. A.A. Balkema. Trondheim, June, 233–238.

Hungr, O., & Evans, S. G. (2004). Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism. Geological Society of America Bulletin, 116(9-10), 1240-1252.

Hungr, O., & Mcdougall, S. (2009). Two numerical models for landslide dynamic analysis. Computers & geosciences, 35(5), 978-992.

Igwe, O. (2018). The characteristics and mechanisms of the recent catastrophic landslides in Africa under IPL and WCoE projects. Landslides, 15(12), 2509-2519.

Iverson, R. M., & George, D. L. (2014). A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2170), 20130819–20130819.

Itasca, Consulting Group Inc. (2008). PFC3D Particle Flow Code in 3 Dimensions. User’s Guide; Itasca, Consulting Group Inc.: Minneapolis, MN, USA.

Jeong, S. W., Wu, Y.-H., Cho, Y. C., & Ji, S. W. (2018). Flow behavior and mobility of contaminated waste rock materials in the abandoned Imgi mine in Korea. Geomorphology, 301, 79–91.

Jiang, L. W., Wang, S. T., & Liu, H. C. (2002). Research on Hypergene Geological Hazards in the Upstream of Min River. Journal of Geological Hazards and Environment Preservation, 1, 13-17(in Chinese).

Liu, C., Pollard, D. D., & Shi, B. (2013). Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. Journal of Geophysical Research: Solid Earth, 118(1), 71–82.

Liu, K. F., Wei, S. C., & Wu, Y. H. (2014). The influence of accumulated precipitation on debris flow hazard area. In Landslide Science for a Safer Geoenvironment; Springer: Cham, Switzerland; pp. 45–50.

McDougall, S. (2017). 2014 Canadian Geotechnical Colloquium: Landslide runout analysis - current practice and challenges. Canadian Geotechnical Journal, 54(5), 605–620.

Mcdougall, S., & Hungr, O. (2004). A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal, 41(6), 1084-1097.

Musso, A., Federico, F., & Troiano, G. (2004). A mechanism of pore pressure accumulation in rapidly sliding submerged porous blocks. Computers and Geotechnics, 31(3), 209-226.

Ouyang, C. J., Zhao, W., He, S. M., Wang, D. P., Zhou, S., An, H. C., Wang, Z. W., &Cheng, D. X. (2017). Numerical modeling and dynamic analysis of the 2017 Xinmo landslide in Maoxian County, China. Journal of Mountain Science, 14(9), 1701–1711.

PUDASAINI, S. P., & HUTTER, K. (2003). Rapid shear flows of dry granular masses down curved and twisted channels. Journal of Fluid Mechanics, 495, 193–208.

Scaringi, G., Fan, X., Xu, Q., Liu, C., Ouyang, C., Domènech, G., Yang, F., & Dai, L. X. (2018). Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide (Sichuan, China). Landslides, 15(7), 1359–1375.

Sosio, R., Crosta, G. B., & Hungr, O. (2008). Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Engineering Geology, 100(1-2), 11–26.

Tang, R. C., Wen, D. H., Huang, Z. Z., Wu, X. G., & Lin, W. F. (1991). The quaternary activity characteristics of several major active faults in the Songpan-Longmenshan Region. Earthquake Research in China, 7(3), 64-71(in Chinese).

Wang, Y., Fang, Z., Wang, M., Peng, L., & Hong, H. (2020). Comparative study of landslide susceptibility mapping with different recurrent neural networks. Computers & Geosciences, 104445. doi:10.1016/j.cageo.2020.104445.

Wang, Y., Duan, H., & Hong, H. (2019). A comparative study of composite kernels for landslide susceptibility mapping: A case study in Yongxin County, China. CATENA, 183, 104217. doi:10.1016/j.catena.2019.104217.

Wang, L. S., Yang, L. Z., Li, T. B., & Wei, H. (2000). Evolution Mechanism of Jiaochang Earthquake Landslide on Min River and Its Controlling. Journal of Geological Hazards and Environment Preservation, 3,195-199 (in Chinese).

Wang, X., Yin, Y., Wang, J., Lian, B., Qiu, H., & Gu, T. (2018). A nonstationary parameter model for the sandstone creep tests. Landslides, 15(7), 1377–1389.

Wang, X., Zhan, H., Wang, J., & Li, P. (2018). On the mechanical damage to tailings sands subjected to dry–wet cycles. Bulletin of Engineering Geology and the Environment, 78(6), 4647-4657.

Wang, F. W., & Sassa, K. (2002). A modified geotechnical simulation model for the areal prediction of landslide motion. In: Proceedings of the first European conference on landslides, Prague, Czech Republic; Rotterdam, Balkema, pp. 735-740.

Warrick, J. A., Ritchie, A. C., Schmidt, K. M., Reid, M. E., & Logan, J. (2019). Characterizing the catastrophic 2017 Mud Creek landslide, California, using repeat structure-from-motion (SfM) photogrammetry. Landslides, 16(6), 1201-1219.

Wang, Y., Fang, Z., & Hong, H. (2019). Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of The Total Environment, 666, 975-993.

Wu, Y. L., Ke, Y. T., Chen, Z., Liang, S. Y., Zhao, H. L., & Hong, H. Y. (2020). Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. CATENA, 187, 104396, https://doi.org/10.1016/j.catena.2019.104396.

Xing, A., Wang, G., Li, B., Jiang, Y., Feng, Z., & Kamai, T. (2015). Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling, Guizhou, China. Canadian Geotechnical Journal, 52(7), 971-981.

Xu, Q., Fan, X., & Scaringi, G. (2017). Brief communication: Post-seismic landslides, the tough lesson of a catastrophe. Natural Hazards and Earth System Sciences Discussions, 1–11.

Yang, L., Wei, Y., Wang, W., & Zhu, S. (2018). Numerical Runout Modeling Analysis of the Loess Landslide at Yining, Xinjiang, China. Water, 11, 1324.doi:10.5194/nhess-2017-363.

Yin, Y. P., Cheng, Y. L., Liang, J. T., & Wang, W. P. (2016). Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake. Landslides, 13(1), 9–23.

Yin, Y., Wang, F., & Sun, P. (2009). Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6(2), 139–152.

Yin, Y. P., Wang, W. P., Zhang, N., Yan, J.K., Wei, Y. J., & Yang, L.W. (2017). Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: a case study of the Xinmo landslide in Maoxian County,Sichuan Province. Geology China, 44(5), 827–841 (in Chinese).

Yin, Y., Wang, W., Zhang, N., Yan, J., & Wei, Y. (2017). The June 2017 Maoxian landslide: Geological disaster in an earthquake area after the Wenchuan Ms 8.0 earthquake. Science China Technological Sciences, 60(11), 1762–1766.

Zhao, C. & Lu, Z. (2018). Remote Sensing of landslides A Review. Remote Sensing, 10(2), 279. doi:10.3390/rs10020279.

Zhang, M., & McSaveney, M. (2017). Rock avalanche deposits store quantitative evidence on internal shear during runout. Geophysical Research Letters, 44(17), 8814-8821.

Zhang, M., Yin, Y., & McSaveney, M. (2016). Dynamics of the 2008 earthquake-triggered Wenjiagou Creek rock avalanche, Qingping, Sichuan, China. Engineering Geology, 200(1), 75-87.

How to Cite

APA

Yang, L., Wang, W., Zhang, N. and Wei, Y. (2020). Characteristics and Numerical Runout Modeling Analysis of the Xinmo Landslide in Sichuan, China. Earth Sciences Research Journal, 24(2), 169–181. https://doi.org/10.15446/esrj.v24n2.78990

ACM

[1]
Yang, L., Wang, W., Zhang, N. and Wei, Y. 2020. Characteristics and Numerical Runout Modeling Analysis of the Xinmo Landslide in Sichuan, China. Earth Sciences Research Journal. 24, 2 (Apr. 2020), 169–181. DOI:https://doi.org/10.15446/esrj.v24n2.78990.

ACS

(1)
Yang, L.; Wang, W.; Zhang, N.; Wei, Y. Characteristics and Numerical Runout Modeling Analysis of the Xinmo Landslide in Sichuan, China. Earth sci. res. j. 2020, 24, 169-181.

ABNT

YANG, L.; WANG, W.; ZHANG, N.; WEI, Y. Characteristics and Numerical Runout Modeling Analysis of the Xinmo Landslide in Sichuan, China. Earth Sciences Research Journal, [S. l.], v. 24, n. 2, p. 169–181, 2020. DOI: 10.15446/esrj.v24n2.78990. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/78990. Acesso em: 15 jul. 2024.

Chicago

Yang, Longwei, Wenpei Wang, Nan Zhang, and Yunjie Wei. 2020. “Characteristics and Numerical Runout Modeling Analysis of the Xinmo Landslide in Sichuan, China”. Earth Sciences Research Journal 24 (2):169-81. https://doi.org/10.15446/esrj.v24n2.78990.

Harvard

Yang, L., Wang, W., Zhang, N. and Wei, Y. (2020) “Characteristics and Numerical Runout Modeling Analysis of the Xinmo Landslide in Sichuan, China”, Earth Sciences Research Journal, 24(2), pp. 169–181. doi: 10.15446/esrj.v24n2.78990.

IEEE

[1]
L. Yang, W. Wang, N. Zhang, and Y. Wei, “Characteristics and Numerical Runout Modeling Analysis of the Xinmo Landslide in Sichuan, China”, Earth sci. res. j., vol. 24, no. 2, pp. 169–181, Apr. 2020.

MLA

Yang, L., W. Wang, N. Zhang, and Y. Wei. “Characteristics and Numerical Runout Modeling Analysis of the Xinmo Landslide in Sichuan, China”. Earth Sciences Research Journal, vol. 24, no. 2, Apr. 2020, pp. 169-81, doi:10.15446/esrj.v24n2.78990.

Turabian

Yang, Longwei, Wenpei Wang, Nan Zhang, and Yunjie Wei. “Characteristics and Numerical Runout Modeling Analysis of the Xinmo Landslide in Sichuan, China”. Earth Sciences Research Journal 24, no. 2 (April 1, 2020): 169–181. Accessed July 15, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/78990.

Vancouver

1.
Yang L, Wang W, Zhang N, Wei Y. Characteristics and Numerical Runout Modeling Analysis of the Xinmo Landslide in Sichuan, China. Earth sci. res. j. [Internet]. 2020 Apr. 1 [cited 2024 Jul. 15];24(2):169-81. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/78990

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Longwei Yang, Yangqing Xu, Luqi Wang, Qiangqiang Jiang. (2023). Seismic Signal Characteristics and Numerical Modeling Analysis of the Xinmo Landslide. Sustainability, 15(7), p.5851. https://doi.org/10.3390/su15075851.

2. Kuanxing Zhu, Peihua Xu, Chen Cao, Lianjing Zheng, Yue Liu, Xiujun Dong. (2021). Preliminary Identification of Geological Hazards from Songpinggou to Feihong in Mao County along the Minjiang River Using SBAS-InSAR Technique Integrated Multiple Spatial Analysis Methods. Sustainability, 13(3), p.1017. https://doi.org/10.3390/su13031017.

3. Bingli Hu, Lijun Su, Bo Zhao, Qijun Xie, Hongjian Liao, Alessandro Pasuto, Zhenyu Liu. (2022). New Insight into the Sliding Mechanism and Post-Stability of the 2017 Xinmo Landslide in Sichuan, China. Bulletin of Engineering Geology and the Environment, 81(10) https://doi.org/10.1007/s10064-022-02917-3.

4. Qing He, Fuyun Guo, Ruidong Li, Lichao Wang, Wenpei Wang, Nan Zhang, Luqi Wang, Jingxuan Gao. (2023). Characteristics, mobility and dynamic of the Yahuokou flow-like landslide in Zhouqu, Gansu, China. Landslides, 20(3), p.629. https://doi.org/10.1007/s10346-022-02000-8.

5. Xing Li, Jun Tian. (2023). Deformation Failure Mode of Slope Based on Stochastic Limit Equilibration-Material Point Method for a Hospital Environment. Journal of Testing and Evaluation, 51(1), p.152. https://doi.org/10.1520/JTE20210775.

Dimensions

PlumX

Article abstract page views

854

Downloads

Download data is not yet available.