Published

2020-04-01

Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing

Variación estacional en la elipticidad de la onda Rayleigh como posible indicador de la activación de flujos de tierra, caso de estudio: deslizamiento de tierra en Sobradinho comparado con prueba de carga en pilote

DOI:

https://doi.org/10.15446/esrj.v24n2.81974

Keywords:

ambient noise, HVSR, reactivation, stiffness, soil mechanics (en)
ruido ambiental, REHV, reactivación, rigidez, mecánica de suelos (es)

Downloads

Authors

  • Yawar Hussain Clemson University https://orcid.org/0000-0002-4155-6764
  • Martin Cardenas-Soto National Autonomous University of Mexico
  • César Moreira São Paulo State University - UNESP
  • Juan Rodriguez-Rebolledo University of Brasilia
  • Omar Hamza University of Derby
  • Renato Prado University of Sao Paulo
  • Hernan Martinez-Carvajal Universidad Nacional de Colombia - Medellin
  • Jie Dou Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1, Kami-Tomioka, Nagaoka, Niigata, 940-2188, Japan

Rainfall-induced landslides pose a significant risk to communities and infrastructures. To improve the prediction of such events, it is imperative to adequately investigate the rainfall-dependent dynamics (leading to fluidization) and any associated internal sliding along shear planes within clayey slopes. Therefore, the present study adopted ambient noise analysis based on the Horizontal to Vertical Spectral Ratio (HVSR) method, to measure the seasonal variation of Rayleigh wave ellipticity as an indicator for the internal deformation and transition in the material state. The methodology was applied to an existing landslide, where variations in soil stiffness and internal sliding were expected to occur in response to rainfall. To improve the interpretation of the HVSR results (and hence the prediction of landslide’ reactivation by rainfall), HVSR measurements were also conducted on a field-scale pile load test. The pile test allowed a comparison of the seismic data generated by the soil movement along shear planes. The HVSR curves of this field test showed two frequency peaks with no changes in the resonance. In comparison with the data obtained from the landslide, the resultant HVSR curves showed three frequency patterns: ubiquitous (2Hz), landslide (4-8Hz), and flat (no peak). However, the HVSR curves did not show any response to the expected seasonally induced variations in the landslide mass because of the relatively short data acquisition. Nevertheless, time-lapse HVSR is a promising technique that can complement other geophysical methods for improving landslide monitoring.

Los deslizamientos de tierra inducidos por lluvia representan un riesgo significativo para las comunidades y la infraestructura. Para mejorar la predicción de tales eventos, es imperativo investigar adecuadamente la dinámica generada por la lluvia que conduce a la fluidización, así como, cualquier deslizamiento interno que esté asociado y que se desarrolle a lo largo de los planos de falla dentro de los taludes arcillosos. Por lo tanto, para medir la variación estacional de la elipticidad de la onda Rayleigh, como un indicador de la deformación interna y de la transición del estado del material, el presente estudio adoptó la Relación Espectral Horizontal a Vertical (REHV) basada en el ruido ambiental. La técnica fue aplicada en un área de deslizamiento existente, donde se esperaba que ocurrieran variaciones en la rigidez del suelo y deslizamientos internos debidos a la lluvia. Para mejorar la interpretación de los resultados de la REHV y, por tanto, la predicción del deslizamiento generado por lluvia, la REHV fue calibrada en campo en una prueba de carga en pilote. La prueba en el permitió una comparación de los datos sísmicos generados por el movimiento del suelo a lo largo de los planos de falla. Las curvas REHV de esta prueba de campo mostraron dos picos de frecuencia sin cambios en la de la resonancia. En comparación con los datos obtenidos del deslizamiento de tierra, las curvas REHV resultantes mostraron tres patrones de frecuencia: ubicuo (2Hz), deslizamiento de tierra (4-8Hz) y plano (sin pico). Debido a que la recopilación de datos fue relativamente corta, las curvas REHV no mostraron ninguna respuesta a las variaciones estacionales inducidas por el deslizamiento de tierra. Sin embargo, la obtención de curvas REHV en un periodo de tiempo es una técnica prometedora que puede complementar otros métodos geofísicos para mejorar el monitoreo de deslizamientos de tierra.

References

Baum, R. L., Savage, W. Z., & Wasowski, J. (2003). Mechanics of Earth Flows. Paper presented at International Workshop on Occurrence and Mechanisms of Flows in Natural Slopes and Earthfills, Sorrento, Italy.

Bertello, L., Berti, M., Castellaro, S., & Squarzoni, G. (2018). Dynamics of an Active Earthflow Inferred From Surface Wave Monitoring. Journal of Geophysical Research: Earth Surface, 123(8), 1811-1834.

Berti, M., Bertello, L., & Squarzoni, G. (2019). Surface-wave velocity measurements of shear stiffness of moving earthflows. Landslides, 16(3), 469-484.

Bonamassa, O., & Vidale, J. E. 1991. Directional site resonances observed from aftershocks of the 18 October 1989 Loma Prieta earthquake. Bulletin of the Seismological Society of America, 81(5), 1945-1957.

Bonnefoy-Claudet, S., Cotton, F., & Bard, P. Y. (2006). The nature of noise wavefield and its applications for site effects studies. A literature review. Earth-Science Reviews, 79(3-4), 205-227.

Bonnefoy-Claudet, S., Köhler, A., Cornou, C., Wathelet, M., & Bard, P. Y. (2008). Effects of Love waves on microtremor H/V ratio. Bulletin of the Seismological Society of America, 98(1), 288-300.

Braga, L. M., Caldeira, D., da Silva Nunes, J. G., Hussain, Y., Carvajal, H. M., & Uagoda, R. (2018). Caracterização geomorfológica e dinâmica erosivo-deposicional de encostas no vale fluvial do Ribeirão Contagem-DF, Brasil. Anuário do Instituto de Geociências – UFRJ, 41(2), 51-65.

Burjánek, J., Gassner-Stamm, G., Poggi, V., Moore, J.R., & Fäh, D. (2010). Ambient vibration analysis of an unstable mountain slope. International Journal of Geophysics, 180(2), 820–828.

Burjánek, J., Moore, J. R., Yugsi-Molina, F. X., & Fäh, D. (2012). Instrumental evidence of normal mode rock slope vibration. Geophysical Journal International, 188, 559–569.

Chang, K. T., Merghadi, A., Yunus, A. P., Pham, B. T., & Dou, J. (2019). Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Scientific Reports, 9, 12296. https://doi.org/10.1038/s41598-019-48773-2

Chatelain, J. L., Guillier, B., Cara, F., Duval, A. M., Atakan, K., & Bard, P. Y. (2008). Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bulletin of Earthquake Engineering, 6(1), 33-74.

Donnellan, A., Parker, J., Milliner, C., Farr, T. G., Glasscoe, M., Lou, Y., Zheng, Y., & Hawkins, B. (2018). UAVSAR and optical analysis of the Thomas fire scar and Montecito debris flows: Case study of methods for disaster response using remote sensing products. Earth and Space Science, 5(7), 339-347.

Dou, J., Paudel, U., Oguchi, T., Uchiyama, S., & Hayakawa, Y. S. (2015a). Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan. Terrestrial Atmospheric and Oceanic Sciences 26, 227. https://doi.org/10.3319/TAO.2014.12.02.07(EOSI)

Dou, J., Yamagishi, H., Pourghasemi, H. R., Yunus, A. P., Song, X., Xu, Y., & Zhu, Z. (2015b). An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78, 1749–1776. https://doi.org/10.1007/s11069-015-1799-2

Dou, J., Yunus, A. P., Bui, D. T., Merghadi, A., Sahana, M., Zhu, Z., Chen, C. W., Han, Z., Pham, B. T. (2020a). Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides, 17, 641–658. https://doi.org/10.1007/s10346-019-01286-5

Dou, J., Yunus, A. P., Merghadi, A., Shirzadi, A., Nguyen, H., Hussain, Y., Avtar, R., Chen, Y. L., Pham, B. T., & Yamagishi, H. (2020b). Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Science of the Total Environment, 137320. https://doi.org/10.1016/j.scitotenv.2020.137320

Dou, J., Yunus, A. P., Tien Bui, D., Sahana, M., Chen, C. W., Zhu, Z., Wang, W., & Pham, B. T. (2019). Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM. Remote Sensing, 11, 638. https://doi.org/10.3390/rs11060638

Fäh, D., Kind, F., & Giardini, D. (2001). A theoretical investigation of average H/V ratios. Geophysical Journal International, 145(2), 535-549.

Fan, X., Zhan, W., Dong, X., van Westen, C., Xu Q., Dai, L., Yang, Q., Huang, R., & Havenith, H. B. (2018). Analyzing successive landslide dam formation by different triggering mechanisms: The case of the Tangjiawan landslide, Sichuan, China. Engineering geology, 4(243), 128-144.

Freitas-Silva, F. H., & Campos, J. E. G. (1998). Geologia do Distrito Federal. In: IEMA/SEMATEC/UnB 1998. Inventário Hidrogeológico e dos Recursos Hídricos Superficiais do Distrito Federal. Brasília. IEMA/SEMATEC/UnB. Vol. 1, Part I. P86.

García-Jerez A., Luzón F., Navarro M., Pérez-Ruiz J.A. (2006). Characterization of the sedimentary cover of the Zafarraya basin, southern Spain, by means of ambient noise. Bulletin of the Seismological Society of America, 96(3), 957-967.

Gosar, A., & Lenart, A. (2010). Mapping the thickness of sediments in the Ljubljana Moor basin (Slovenia) using microtremors. Bulletin of Earthquake Engineering, 8(3), 501-518.

Gosar, A., Rošer, J., Motnikar, B. Š., & Zupančič, P. (2010). Microtremor study of site effects and soil-structure resonance in the city of Ljubljana (central Slovenia). Bulletin of earthquake engineering, 8(3), 571-592.

Hamza, O., & Bellis A. (2008). Gault Clay embankment slopes on the A14–Case studies of shallow and deep instability. In Advances in Transportation Geotechnics: Proceedings of the International Conference held in Nottingham, UK, 25-27 August 2008 (p. 307). CRC Press.

Harba, P., & Pilecki, Z. (2017). Assessment of time–spatial changes of shear wave velocities of flysch formation prone to mass movements by seismic interferometry with the use of ambient noise. Landslides, 14(3), 1225-1233.

Hungr, O., Evans, S. G., Bovis, M. J., Hutchinson, J. N. (2001). A review of the classification of landslides the flow type. Environmental and Engineering Geoscience, 7, 221-238.

Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2), 167-194.

Hussain, Y., Cardenas-Soto, M., Uagoda, R., Martino, S., Rodriguez-Rebolledo, J., Hamza, O., & Martinez-Carvajal, H. (2019c). Monitoring of Sobradinho landslide (Brasília, Brazil) and a prototype vertical slope by time-lapse interferometry. Brazilian Journal of Geology, 49(2), e20180085.

Hussain, Y., Cardenas-Soto, M., Uagoda, R., Martino, S., Sanchez, N. P., Moreira, C. A., Martinez-Carvajal, H. (2019d). Shear Wave Velocity Estimation by a Joint Inversion of HVSR and f-k Curves under Diffuse Field Assumption: A Case Study of Sobradinho Landslide. Anuário do Instituto de Geociência, 42(1/2019), 742-775.

Hussain, Y., Hussain, S. M., Cardenas-Soto, M., Uagoda, R., Martino, S., Rodriguez-Rebolledo, J., Hamza, O., Martinez-Carvajal, H. (2019b). Typological analysis of slidequakes emitted from landslides: experiments on an expander body pile and Sobradinho landslide (Brasilia, Brazil). REM-International Engineering Journal, 72(3), 453-460.

Hussain, Y., Martinez-Carvajal, H., Cárdenas-Soto, M., Uagoda, R., Martino, S., Hussain, B. M. (2017). Microtremor Response of a Mass Movement in Federal District of Brazil. Anuário do Instituto de Geociências, 40(3), 212-221.

Hussain, Y., Martinez-Carvajal, H., Condori, C., Uagoda, R., Cárdenas-Soto, M., Cavalcante, A. L. B., Da Cunha, L. S., Martino S. (2019a). Ambient Seismic Noise: A Continuous Source for the Dynamic Monitoring of Landslides. Terrae Didatica, 15(01), 103-107.

Imai, T., & Tonouchi, K. (1982). Correlation of N-value with S-wave velocity and shear modulus. Penetration testing: proceedings of the second European symposium on penetration testing, (Amsterdam), 57–7.

Imposa, S., Grassi, S., Fazio, F., Rannisi, G., & Cino, P. (2017). Geophysical surveys to study a landslide body (north-eastern Sicily). Natural Hazards, 86(2), 327-343.

Jongmans, D., Baillet, L., Larose, E., Bottelin, P., Mainsant, G., Chambon, G., & Jaboyedoff, M. (2015). Application of ambient vibration techniques for monitoring the triggering of rapid landslides. Paper presented at Engineering Geology for Society and Territory, Torino, Italy.

Kalil, A. E., Abdel, H. E., & Mossa, H. (2016). The efficiency of horizontal to vertical spectral ratio technique for buried monuments delineation (case study, Saqqara (Zoser) pyramid, Egypt). Arabian Journal of Geosciences, 9(1), 1-9.

Köhler, A., Nuth, C., Schweitzer, J., Weidle, C., & Gibbons, S. J. (2015). Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard. Polar Research, 34(1), 26178.

Li, H., Xu, Y., Zhou, J., Wang, X., Yamagishi, H., & Dou, J. (2020). Preliminary analyses of a catastrophic landslide occurred on July 23, 2019, in Guizhou Province, China. Landslides, 17, 719–724. https://doi.org/10.1007/s10346-019-01334-0

Lowe, D. R. (1976). Subaqueous liquefied and fluidized sediment flows and their deposits. Sedimentology, 23(3), 285-308.

Mainsant, G., Jongmans, D., Chambon, G., Larose, E., & Baillet, L. (2012). Shear-wave velocity as an indicator for rheological changes in clay materials: Lessons from laboratory experiments. Geophysical Research Letters, 39(19).

Martins, T. D., Vieira, B. C., Fernandes, N. F., Oka-Fiori, C., & Montgomery, D. R. (2017). Application of the SHALSTAB model for the identification of areas susceptible to landslides: Brazilian case studies. Revista de Geomorfologie, 19, 136-144.

Moore, J. R., Gischig, V., Burjánek, J., Loew, S., & Fäh, D. (2011). Site effects in unstable rock slopes: dynamic behavior of the Randa instability (Switzerland). Bulliten of Seismological Society America, 101.

Nogoshi, M., & Igarash, T. (1971). On the amplitude characteristics of microtremor (Part 2). Journal of the Seismological Society of Japan, 24(1), 26-40.

Nunes, J. G. S., Caldeira, D., Braga, L. M., Hussain, Y., Carvajal, H. M., & Uagoda, R. (2019). Aplicação do GPR Para Análise e Diferenciação entre Materiais Aluvionares e Coluvionares, Embasadas em Observações Diretas, no Vale do Ribeirão Contagem-Distrito Federal (in Purtuguese), Revista Brasileira de Geomorfologia, 20(2), 217-238.

Panzera, F., D'Amico, S., Lotteri, A., Galea, P., & Lombardo, G. (2012). Seismic site response of unstable steep slope using noise measurements: the case study of Xemxija bay area, Malta. Natural Hazards and Earth System Sciences, 12(11), 3421.

Pastor, M., Manzanal, D., Fernandez Merodo, J. A., Mira, P., Blanc, T., Drempetic, V., Pastor M. J., Haddad, B., Sanchez, M. (2010). From solids to fluidized soils: diffuse failure mechanisms in geostructures with applications to fast catastrophic landslides. Granular Matter, 12(3), 211-228.

Pazzi, V., Ceccatelli, M., Gracchi, T., Masi, E. B., Fanti, R. (2018b). Assessing subsoil void hazards along a road system using H/V measurements, ERTs, and IPTs to support local decision makers. Near Surface Geophysics, 16, 282-297.

Pazzi, V., Di Filippo, M., Di Nezza, M., Carlà, T., Bardi, F., Marini, F., Fontanelli, K., Intrieri, E., Fanti, R. (2018a). Integrated geophysical survey in a sinkhole-prone area: microgravity, electrical resistivity tomographies, and seismic noise measurements to delimit its extension. Engineering Geology, 243, 282-293.

Pazzi, V., Tanteri, L., Bicocchi, G., D'Ambrosio, M., Caselli, A., & Fanti, R. (2017). H/V measurements as an effective tool for the reliable detection of landslide slip surfaces: case studies of Castagnola (La Spezia, Italy) and Roccalbegna (Grosseto, Italy). Physics and Chemistry of the Earth, Parts A/B/C, 98, 136-153.

Pham, B. T., Prakash, I., Dou, J., Singh, S. K., Trinh, P. T., Tran, H. T., Le, T. M., Van Phong, T., Khoi, D. K., Shirzadi, A., & Bui, D. T. (2019). A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto Interational, 1–25. https://doi.org/10.1080/10106049.2018.1559885

Picotti, S., Francese, R., Giorgi, M., Pettenati, F., & Carcione, J. M. (2017). Estimation of glacier thicknesses and basal properties using the horizontal-to-vertical component spectral ratio (HVSR) technique from passive seismic data. Journal of Glaciology, 63(238), 229-248.

Pischiutta, M., Fondriest, M., Demurtas, M., Magnoni, F., Di Toro, G., & Rovelli, A. (2017). Structural control on the directional amplification of seismic noise (Campo Imperatore, central Italy). Earth and Planetary Science Letters, 471, 10-18.

Rezaei, S., Shooshpasha, I., Rezaei, H. (2018). Evaluation of landslides using ambient noise measurements (case study: Nargeschal landslide). International Journal of Geotechnical Engineering, 1–11.

Rosi, A., Canavesi, V., Segoni, S., Dias Nery, T., Catani, F., & Casagli, N. (2019). Landslides in the Mountain Region of Rio de Janeiro: A Proposal for the Semi-Automated Definition of Multiple Rainfall Thresholds. Geosciences, 9(5), 203.

Sesame (2004). Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations. Measurements, Processing and Interpretation. SESAME European Research Project WP12—D23.12. http://sesame-fp5.obs.ujf-grenoble.fr/ Papers/HV_User_Guidelines.pdf.

Silva, M. T. M. G. (2009). Metodologia para determinação de parâmetros para solos não saturados utilizando ensaios com umidade conhecida. MSc. Dissertation, Universidade de Brasília, Brasília, Brazil.

Stanko, D., Markušić S., Strelec, S., & Gazdek, M. (2017). HVSR analysis of seismic site effects and soil-structure resonance in Varaždin city (North Croatia). Soil Dynamics and Earthquake Engineering, 92, 666-677.

Tang, C., Zhu, J., Qi, X., & Ding, J. (2011). Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: A case study in the Beichuan area of China. Engineering Geology, 122(1-2), 22-33.

Van Asch, T. W. J., & Malet, J. P. (2009). Flow-type failures in fine-grained soils: an important aspect in landslide hazard analysis. Natural Hazards and Earth System Sciences, 9(5), 1703-1711.

Vouillamoz, N., Rothmund, S., & Joswig, M. (2018). Characterizing the complexity of microseismic signals at slow-moving clay-rich debris slides: the Super-Sauze (southeastern France) and Pechgrabe (Upper Austria) case studies. Earth Surface Dynamics, 6(2).

Wibisana, A. (2013). The myths of environmental compensation in Indonesia: lessons from the Sidoarjo mudflow. In: Regulating Disasters, Climate Change and Environmental Harm. Edward Elgar Publishing.

Yunus, A. P., Fan, X., Tang, X., Jie, D., Xu, Q., & Huang, R. (2020). Decadal vegetation succession from MODIS reveals the spatio-temporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake. Remote Sensing of Environment, 236, 111476. https://doi.org/10.1016/j.rse.2019.111476

Zare, M. A., Haghshenas, E., & Jafari, M. K. (2017). Interpretation of dynamic response of a very complex landslide (Latian-Tehran) based on ambient noise investigation. Soil Dynamics and Earthquake Engineering, 100, 559-572.

Zhou, J. W., Cui, P., & Hao, M. H. (2016). Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides, 13, 39-54.

Zhou, J. W., Cui, P., Yang, X. G., Su, Z. M., Guo, X. J. (2013). Debris flows introduced in landslide deposits under rainfall conditions: The case of Wenjiagou gully. Journal of Mountain Science, 10, 249-260.

How to Cite

APA

Hussain, Y., Cardenas-Soto, M., Moreira, C., Rodriguez-Rebolledo, J., Hamza, O., Prado, R., Martinez-Carvajal, H. and Dou, J. (2020). Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing. Earth Sciences Research Journal, 24(2), 141–151. https://doi.org/10.15446/esrj.v24n2.81974

ACM

[1]
Hussain, Y., Cardenas-Soto, M., Moreira, C., Rodriguez-Rebolledo, J., Hamza, O., Prado, R., Martinez-Carvajal, H. and Dou, J. 2020. Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing. Earth Sciences Research Journal. 24, 2 (Apr. 2020), 141–151. DOI:https://doi.org/10.15446/esrj.v24n2.81974.

ACS

(1)
Hussain, Y.; Cardenas-Soto, M.; Moreira, C.; Rodriguez-Rebolledo, J.; Hamza, O.; Prado, R.; Martinez-Carvajal, H.; Dou, J. Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing. Earth sci. res. j. 2020, 24, 141-151.

ABNT

HUSSAIN, Y.; CARDENAS-SOTO, M.; MOREIRA, C.; RODRIGUEZ-REBOLLEDO, J.; HAMZA, O.; PRADO, R.; MARTINEZ-CARVAJAL, H.; DOU, J. Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing. Earth Sciences Research Journal, [S. l.], v. 24, n. 2, p. 141–151, 2020. DOI: 10.15446/esrj.v24n2.81974. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/81974. Acesso em: 15 jul. 2024.

Chicago

Hussain, Yawar, Martin Cardenas-Soto, César Moreira, Juan Rodriguez-Rebolledo, Omar Hamza, Renato Prado, Hernan Martinez-Carvajal, and Jie Dou. 2020. “Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing”. Earth Sciences Research Journal 24 (2):141-51. https://doi.org/10.15446/esrj.v24n2.81974.

Harvard

Hussain, Y., Cardenas-Soto, M., Moreira, C., Rodriguez-Rebolledo, J., Hamza, O., Prado, R., Martinez-Carvajal, H. and Dou, J. (2020) “Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing”, Earth Sciences Research Journal, 24(2), pp. 141–151. doi: 10.15446/esrj.v24n2.81974.

IEEE

[1]
Y. Hussain, “Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing”, Earth sci. res. j., vol. 24, no. 2, pp. 141–151, Apr. 2020.

MLA

Hussain, Y., M. Cardenas-Soto, C. Moreira, J. Rodriguez-Rebolledo, O. Hamza, R. Prado, H. Martinez-Carvajal, and J. Dou. “Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing”. Earth Sciences Research Journal, vol. 24, no. 2, Apr. 2020, pp. 141-5, doi:10.15446/esrj.v24n2.81974.

Turabian

Hussain, Yawar, Martin Cardenas-Soto, César Moreira, Juan Rodriguez-Rebolledo, Omar Hamza, Renato Prado, Hernan Martinez-Carvajal, and Jie Dou. “Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing”. Earth Sciences Research Journal 24, no. 2 (April 1, 2020): 141–151. Accessed July 15, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/81974.

Vancouver

1.
Hussain Y, Cardenas-Soto M, Moreira C, Rodriguez-Rebolledo J, Hamza O, Prado R, Martinez-Carvajal H, Dou J. Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing. Earth sci. res. j. [Internet]. 2020 Apr. 1 [cited 2024 Jul. 15];24(2):141-5. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/81974

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Mustafa Senkaya, Ali Erden Babacan, Hakan Karslı, Bekir Taner San. (2022). Origins of diverse present displacements in a paleo-landslide area (Isiklar, Trabzon, northeast Turkey). Environmental Earth Sciences, 81(8) https://doi.org/10.1007/s12665-022-10372-2.

2. Olegario Alonso-Pandavenes, Daniela Bernal, Francisco Javier Torrijo, Julio Garzón-Roca. (2023). A Comparative Analysis for Defining the Sliding Surface and Internal Structure in an Active Landslide Using the HVSR Passive Geophysical Technique in Pujilí (Cotopaxi), Ecuador. Land, 12(5), p.961. https://doi.org/10.3390/land12050961.

3. Yawar Hussain, Helena Seivane, Qiangshan Gao, Susanne Maciel, Omar Hamza, Rogério Uagoda, Welitom Borges. (2023). Seismic signatures and site characterization of an intermittent stream in dry and flood conditions: an implication for soil losses and landslide triggering. Environmental Earth Sciences, 82(12) https://doi.org/10.1007/s12665-023-10960-w.

4. Dong Kook Woo, Wonseok Do, Jinyoung Hong, Hajin Choi. (2022). A Novel and Non-Invasive Approach to Evaluating Soil Moisture without Soil Disturbances: Contactless Ultrasonic System. Sensors, 22(19), p.7450. https://doi.org/10.3390/s22197450.

Dimensions

PlumX

Article abstract page views

976

Downloads

Download data is not yet available.