Published

2019-10-01

Advance of research on the numerical simulation of sediment transport in the Yellow River estuary

Avance de la investigación sobre la simulación numérica del transporte de sedimentos en el estuario del río Amarillo

DOI:

https://doi.org/10.15446/esrj.v23n4.84100

Keywords:

The Yellow River estuary, Sediment transport, Numerical simulation, Summary and Prospect, (en)
Estuario del río Amarillo, transporte de sedimentos, simulación numérica, resumen y perspectiva, (es)

Downloads

Authors

  • Jinfeng Jian School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China
  • Huanzhen Chen School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China

The numerical simulation of sediment transport in the Yellow River estuary is an important method to quantitative analyze the problems by water and sediment movement, including sediment deposition and river bed evolution, beach deposition and development, the formation and development of the delta, and so on. Making an intensive study of the problems is useful to study the principles of sediment movement and the evolution law of the estuary bed, and it is also important significance to scientific demonstrate of the estuary sediment deposition, sea water intrusion prevention treatment scheme and solve the problems of engineering. Based on the mathematical modeling of sediment transport and our research work, this paper analyzes the research statement, the unsolved issues and the developed trend of this kind problem, to provide the theoretical reference on more accurate numerical simulation of sediment transport in the Yellow River estuary and the scientific reference on the demonstration and decision of estuarine regulation scheme.

La simulación numérica del transporte de sedimentos en el estuario del río Amarillo es un método importante para analizar cuantitativamente los problemas por el movimiento del agua y los sedimentos, incluida la deposición de sedimentos y la evolución del lecho del río, la deposición y el desarrollo de las playas, la formación y el desarrollo del delta, y demás. Hacer un estudio intensivo de los problemas es útil para estudiar los principios del movimiento de sedimentos y la ley de evolución del lecho del estuario, y también es importante demostrar científicamente la deposición de sedimentos del estuario, el esquema de tratamiento de prevención de intrusiones de agua de mar y resolver los problemas de ingeniería. Basado en el modelo matemático del transporte de sedimentos y nuestro trabajo de investigación, este trabajo analiza la declaración de la investigación, los problemas no resueltos y la tendencia desarrollada de este tipo de problemas, para proporcionar la referencia teórica sobre una simulación numérica más precisa del transporte de sedimentos en el estuario del río Amarillo y la referencia científica sobre la demostración y decisión del esquema de regulación estuarina.

References

Benkhaldoun, F., Elmahi, I., & Seaid, M. (2010). A New Finite Volume Method for Flux-gradient and Source-term Balancing in Shallow Water Equations. Computer Methods in Applied Mechanics and Engineering, 199, 49-52.

Cao, Z. & Wang, G. (1993). Numerical Simulation of Wave-induced Sediment Lifting and Tidal Sediment Transport. Acta Oceanologica Sinica, 15(1), 107-118.

Chang, H. H. (1998). Generalized computer program: Users’ manual for FLUVIAL-12: Mathematical model for erodible channels. San Diego.

Chippada, S., Dawson, C. N., Martinez, M. L., & Wheeler, M. F. (1998). Finite Element Approximations to the System of Shallow Water Equations I: Continuous Time a Priori Error Sstimates. SIAM Journal on Numerical Analysis, 35(2), 692-711.

Chippada, S., Dawson, C. N., Martinez, M. L., & Wheeler, M. F. (1998). Finite Element Approximations to the System of Shallow Water Equations II: Discrete-Time a Priori Error Estimates. SIAM Journal on Numerical Analysis, 36(1), 226-250.

Dawson, C. N., & Proft, J. (2004). Coupled Discontinuous and Continuous Galerkin Finite Element Methods for the Depth-Integrated shallow Water Equations. Computer Methods in Applied Mechanics and Engineering, 193(1), 289-318.

Dawson, C. N. & Martinez, M. L. (2000). A Characteristic-Galerkin Approximation to a System of Shallow Water Equations. Numerische Mathematik, 86, 239-256.

Dawson, C. N. & Martinez, M. L. (2000). Finite Element Approximations to the System of Shallow Water Equations, Part III: On the Treatment of Boundary Conditions. SIAM Journal on Numerical Analysis, 38(1), 149-159.

Dou, G., Dong, F., Dou, X., & Li, T. (1995). Study on Mathematical Model of Coastal Sediment in Estuary. Science In China (Series A), 25(9), 995-1001.

Guo, Q., Han, Q., & He, M. (1996). Mathematical Model of Two-Dimensional Tidal Current and Sediment. Journal of Sediment research, 1, 48-55.

Hu, S. & Tan, W. (1995). Numerical Modeling of Two-Dimensional Shallow Water Flow on Unstructured Grids. Advances in Water Science, 6(1), 1-9.

Li, D. & Zhang, H. (1999). Finite Element Method for Simulation of Two-Dimensional Flow and Sediment Movement in the Lower Yellow River. Journal of Sediment Research, 4, 59-63.

Li, W. & Chen, H. (2011). A Finite Element Numerical Simulation for 2-D Non-Homogeneous Current and Silt Sedimentation Model. Applied Mathematics A Journal of Chinese Universities, 26(2), 169-178.

Liu, M., Li, W., & Chen, H. (2013). Multistep Characteristic Finite Element Method for Flat Non-homogeneous Current and Silt Sedimentation Model. Acta Mathematicae Applicatae Sinica, 36(5), 870-880.

Lu, X. (2007). Numerical Simulation of Two-Dimensional Shallow Water Equation. Jinan: School of Mathematical Science, Shandong Normal University.

Lu, X. & Peng, R. (1985). Calculation of Suspended Sediment Scouring and Silting -- Solution of Implicit Finite Difference Chasing Method. Journal of Sediment Research, 1, 32-43.

Luo, Z., Zhu, J., Zeng, Q., & Xie, Z. (2004). Mixed Finite Element Methods for the Shallow Water Equations Including Current and Silt Sedimentation - The Continuous-Time Case. Applied Mathematics and Mechanics, 25(1), 74-84.

Luo, Z., Zhu, J., Zeng, Q., & Xie, Z. (2004). Mixed Finite Element Methods for the Shallow Water Equations Including Current and Silt Sedimentation - The Discrete-Time Case Along Characteristics. Applied Mathematics and Mechanics, 25(2), 166-180.

Pan, C., Lu, H., & Yu, P. (2009). Numerical Simulation of Sediment Transport in Discontinuous Shallow Water Flows with Triangle Grids. Journal of Hydrodynamics, 24(6), 778-785.

Shi, B. (2013). An Up-Wind Discontinuous Galerkin Method for Current and Silt Sedimentation in Two Space Dimensions. Jinan: School of Mathematical Sciences, Shandong Normal University.

Spasojevic, M. & Holly, F. M. (1990). MOBED2: Numerical simulation of two-dimensional mobile-bed processes. Technical Report No.344, Iowa Institute of Hydraulic Research, University of Iowa.

Wang, J. & Liu, R. (2003). A Characteristics Based on Galerkin Method for the System of Shallow Water Equations. Acta Mathematicae Applicatae Sinica, 26(3), 458-466.

Wu, H. & Wang, J. (2012). A New High Resolution Finite Volume Method for Solving Two-Dimensional Shallow Water Equation. Computer Technology and Development, 22(10), 55-58.

Xia, K. (2013). A Characteristic-Mixed Finite Element Method for the Simulation of Two-Dimensional Water and Sediment Transport Model. Jinan: School of Mathematical Science, Shandong Normal University.

Yang, G. (1993). River Mathematical Model. Beijing: Ocean Press.

Zhang, X. B. & Yin, R. L. (2002). Planar 2-D Flow and Sediment Mathematical Modeling. Advances in Water Science, 12 (6): 665-669.

Zheng, J. (2003). Development and Application of Numerical Models for Flow Motion and Sediment Transport in an Orthogonal Body-fitted Coordinate System. Marine Science Bulletin, 22(1), 1-8.

Zhou, Z. & Chen, H. (2007). A Characteristic Finite Element Simulation for Current and Silt Sedimentation Model in Two Space Dimensions. Numerical Mathematics A Journal of Chinese Universities, 29(3), 245-256.

How to Cite

APA

Jian, J. and Chen, H. (2019). Advance of research on the numerical simulation of sediment transport in the Yellow River estuary. Earth Sciences Research Journal, 23(4), 379–383. https://doi.org/10.15446/esrj.v23n4.84100

ACM

[1]
Jian, J. and Chen, H. 2019. Advance of research on the numerical simulation of sediment transport in the Yellow River estuary. Earth Sciences Research Journal. 23, 4 (Oct. 2019), 379–383. DOI:https://doi.org/10.15446/esrj.v23n4.84100.

ACS

(1)
Jian, J.; Chen, H. Advance of research on the numerical simulation of sediment transport in the Yellow River estuary. Earth sci. res. j. 2019, 23, 379-383.

ABNT

JIAN, J.; CHEN, H. Advance of research on the numerical simulation of sediment transport in the Yellow River estuary. Earth Sciences Research Journal, [S. l.], v. 23, n. 4, p. 379–383, 2019. DOI: 10.15446/esrj.v23n4.84100. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/84100. Acesso em: 14 jul. 2024.

Chicago

Jian, Jinfeng, and Huanzhen Chen. 2019. “Advance of research on the numerical simulation of sediment transport in the Yellow River estuary”. Earth Sciences Research Journal 23 (4):379-83. https://doi.org/10.15446/esrj.v23n4.84100.

Harvard

Jian, J. and Chen, H. (2019) “Advance of research on the numerical simulation of sediment transport in the Yellow River estuary”, Earth Sciences Research Journal, 23(4), pp. 379–383. doi: 10.15446/esrj.v23n4.84100.

IEEE

[1]
J. Jian and H. Chen, “Advance of research on the numerical simulation of sediment transport in the Yellow River estuary”, Earth sci. res. j., vol. 23, no. 4, pp. 379–383, Oct. 2019.

MLA

Jian, J., and H. Chen. “Advance of research on the numerical simulation of sediment transport in the Yellow River estuary”. Earth Sciences Research Journal, vol. 23, no. 4, Oct. 2019, pp. 379-83, doi:10.15446/esrj.v23n4.84100.

Turabian

Jian, Jinfeng, and Huanzhen Chen. “Advance of research on the numerical simulation of sediment transport in the Yellow River estuary”. Earth Sciences Research Journal 23, no. 4 (October 1, 2019): 379–383. Accessed July 14, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/84100.

Vancouver

1.
Jian J, Chen H. Advance of research on the numerical simulation of sediment transport in the Yellow River estuary. Earth sci. res. j. [Internet]. 2019 Oct. 1 [cited 2024 Jul. 14];23(4):379-83. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/84100

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Sanny Kumar, Prashanth Reddy Hanmaiahgari, H.P. Singh. (2024). Developing a numerical model for sediment transport in channel network by considering multigrade bed load sediment. ISH Journal of Hydraulic Engineering, 30(1), p.18. https://doi.org/10.1080/09715010.2023.2250303.

2. Zewei Guo, Wei Ouyang, Ming Chen, Roberto Xavier Supe Tulcan, Lei Wang, Chunye Lin, Mengchang He. (2023). Increasing precipitation deteriorates the progress of pesticide reduction policy in the vulnerable watershed. npj Clean Water, 6(1) https://doi.org/10.1038/s41545-023-00290-6.

3. Mohammad Saud Afzal, Arijit Pradhan. (2024). Sediment transport analysis under combined action of waves and current using a novel semi-coupled computational fluid dynamics solver. Environment, Development and Sustainability, https://doi.org/10.1007/s10668-024-04810-3.

4. Lin Yang, Shaocheng Ge, Zhihui Huang, Deji Jing, Xi Chen. (2021). The influence of surfactant on the wettability of coal dust and dust reduction efficiency. Arabian Journal of Geosciences, 14(14) https://doi.org/10.1007/s12517-021-07570-w.

5. Zewei Guo, Wei Ouyang, Roberto Xavier Supe Tulcan, Chunye Lin, Mengchang He, Baodong Wang, Ming Xin. (2022). Spatiotemporal partition dynamics of typical herbicides at a turbid river estuary. Marine Pollution Bulletin, 182, p.113946. https://doi.org/10.1016/j.marpolbul.2022.113946.

Dimensions

PlumX

Article abstract page views

332

Downloads

Download data is not yet available.