Published

2020-01-01

Numerical Simulation and Model of Deformation Features of Destabilized Mining Slope Under Fault-Controlled Conditions

Simulación numérica y modelo de características de deformación de la pendiente minera desestabilizada en condiciones controladas por fallas

DOI:

https://doi.org/10.15446/esrj.v24n1.85290

Keywords:

deformation features, destabilized mining slope, fault-controlled conditions (en)
Características de deformación, pendiente minera desestabilizada, condiciones controladas por falla (es)

Downloads

Authors

  • Yiqing Lv College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China

This paper took the Fengmaoding slope, typically found in the mountainous areas of central Shanxi province, as its research area. The stratum structure of the Fengmaoding slope is a typical coal measures stratum covered by a layer of loess. There are communication towers on the slope mass and top of the slope; railways, roads, and rivers at the foot of the slope. There are many villages across from the slope, therefore, the buildings and structures nearby, even the lives of the villagers are threatened by the damages caused by the deformation of the slope. Tectonic development and mining activities have very profound effects on the stability of the slope. Considering the above, this paper analyzed the effects of the fault in controlling the deformation features of the destabilized slope during underground mining by adopting the method of numerical simulation from these perspectives including displacement, stress, strain, among others. under different circumstances (the faulted and unfaulted) so as to provide guidance for future studies about landslides of the same type and give preventive proposals for reference.

Este documento tomó la pendiente de Fengmaoding, que generalmente se encuentra en las áreas montañosas de la provincia central de Shanxi, como su área de investigación. La estructura del estrato de la pendiente de Fengmaoding es un estrato típico de medidas de carbón cubierto por una capa de loess. Hay torres de comunicación en la masa de la pendiente y en la parte superior de la pendiente; ferrocarriles, carreteras y ríos al pie de la pendiente. Hay muchos pueblos al otro lado de la pendiente, por lo tanto, los edificios y estructuras cercanas, e incluso la vida de los aldeanos se ve amenazada por los daños causados por la deformación de la pendiente. El desarrollo tectónico y las actividades mineras tienen efectos muy profundos en la estabilidad de la pendiente. Teniendo en cuenta lo anterior, este artículo analizó los efectos de la falla en el control de las características de deformación de la pendiente desestabilizada durante la minería subterránea mediante la adopción del método de simulación numérica desde estas perspectivas, incluido el desplazamiento, el esfuerzo, la tensión, etc., en diferentes circunstancias (con fallas y sin fallas) para proporcionar orientación para los futuros estudios sobre deslizamientos de tierra del mismo tipo y dar propuestas preventivas de referencia.


References

Chen, S., Yang, T., & Zhang, H. (2008). Ping Shuo open-pit slope stability under the condition of underground mining. Journal of coal, 11, 148-152.

Fan, S. (2006). The stability problem of slope on the goaf. Journal of resources and environment and engineering, S1, 617-627.

Gao, L., Kou, J., & Jiawei, F. (2009). Discrete element numerical simulation application in highway tunnel surrounding rock deformation and failure mechanism study. Journal of Xiangfan College, 11, 41 - 46.

Irwin, R. W. (1977). Subsidence of cultivated organic soil in Ontario. ASCE Journal of the Irrigation and Drainage Division, 103(2), 197-205.

Lv, Y., Liu, H., & Yang, J. (2011). Study of failure mechanism of anti-dip rocks materials slope undermining subsidence. Advanced Materials Research, v143-144, 1097-1101.

Mese, A., & Tutuncu, A. N. (1997). An investigation of mechanical, acoustic and failure properties in unconsolidated sands. International Journal of Rock and Mining Sciences, 314, 467.

Shangguan, K. & Wang, G. (2009). Kiln street mine mining influence mechanism of landslides study. Journal of Coal Science and Technology, 42 -45.

Song, Y., & Nie, D. (2003). Mining slope deformation failure mode analysis and prediction. Journal of Disaster Science, 11, 34-39.

The Fengmaoding unstable geological body of survey report in Luyukou. (2009.)

Yang, Z, & Huang, K. (1999). Mechanism of slope deformation induced by underground mining. Journal of xi 'an institute of mining, 11, 10-14.

How to Cite

APA

Lv, Y. (2020). Numerical Simulation and Model of Deformation Features of Destabilized Mining Slope Under Fault-Controlled Conditions. Earth Sciences Research Journal, 24(1), 61–69. https://doi.org/10.15446/esrj.v24n1.85290

ACM

[1]
Lv, Y. 2020. Numerical Simulation and Model of Deformation Features of Destabilized Mining Slope Under Fault-Controlled Conditions. Earth Sciences Research Journal. 24, 1 (Jan. 2020), 61–69. DOI:https://doi.org/10.15446/esrj.v24n1.85290.

ACS

(1)
Lv, Y. Numerical Simulation and Model of Deformation Features of Destabilized Mining Slope Under Fault-Controlled Conditions. Earth sci. res. j. 2020, 24, 61-69.

ABNT

LV, Y. Numerical Simulation and Model of Deformation Features of Destabilized Mining Slope Under Fault-Controlled Conditions. Earth Sciences Research Journal, [S. l.], v. 24, n. 1, p. 61–69, 2020. DOI: 10.15446/esrj.v24n1.85290. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/85290. Acesso em: 28 mar. 2025.

Chicago

Lv, Yiqing. 2020. “Numerical Simulation and Model of Deformation Features of Destabilized Mining Slope Under Fault-Controlled Conditions”. Earth Sciences Research Journal 24 (1):61-69. https://doi.org/10.15446/esrj.v24n1.85290.

Harvard

Lv, Y. (2020) “Numerical Simulation and Model of Deformation Features of Destabilized Mining Slope Under Fault-Controlled Conditions”, Earth Sciences Research Journal, 24(1), pp. 61–69. doi: 10.15446/esrj.v24n1.85290.

IEEE

[1]
Y. Lv, “Numerical Simulation and Model of Deformation Features of Destabilized Mining Slope Under Fault-Controlled Conditions”, Earth sci. res. j., vol. 24, no. 1, pp. 61–69, Jan. 2020.

MLA

Lv, Y. “Numerical Simulation and Model of Deformation Features of Destabilized Mining Slope Under Fault-Controlled Conditions”. Earth Sciences Research Journal, vol. 24, no. 1, Jan. 2020, pp. 61-69, doi:10.15446/esrj.v24n1.85290.

Turabian

Lv, Yiqing. “Numerical Simulation and Model of Deformation Features of Destabilized Mining Slope Under Fault-Controlled Conditions”. Earth Sciences Research Journal 24, no. 1 (January 1, 2020): 61–69. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/85290.

Vancouver

1.
Lv Y. Numerical Simulation and Model of Deformation Features of Destabilized Mining Slope Under Fault-Controlled Conditions. Earth sci. res. j. [Internet]. 2020 Jan. 1 [cited 2025 Mar. 28];24(1):61-9. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/85290

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Zhiping Peng, Xiumiao Liu, Kuangying Zhao, Deepak Gupta. (2022). Foundation Reinforcement Method of Railway Logistics Center Station Based on Deformation Control and Thermodynamics. Wireless Communications and Mobile Computing, 2022, p.1. https://doi.org/10.1155/2022/6340064.

Dimensions

PlumX

  • Citations
  • CrossRef - Citation Indexes: 1
  • Scopus - Citation Indexes: 2
  • Usage
  • SciELO - Full Text Views: 185
  • SciELO - Abstract Views: 36
  • Captures
  • Mendeley - Readers: 7

Article abstract page views

731

Downloads