Published
Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period
Clasificación de sitio de la Red de Acelerógrafos de Costa Rica basada en mediciones de VS30 y en el período fundamental
DOI:
https://doi.org/10.15446/esrj.v25n4.93927Keywords:
Site classification, Site fundamental period, Shear-wave velocity, Costa Rica, HVSR, Vs30 (en)Clasificación de sitio; período fundamental de sitio; velocidad promedio de la onda de corte; Costa Rica; relaciones horizontales/verticales; Vs30 (es)
Downloads
In this paper, a new seismic site classification for the Costa Rican Strong-Motion Network (CRSMN) is proposed. The soil profile classification of the Costa Rican Seismic Code based on the average shear-wave velocity of the top 30 m (VS30) is used as a reference. The site fundamental period (Tf) is included as a parameter to complement the existing characterization. For this, the VS30 measurements from 52 accelerometric stations are related to the site fundamental period obtained through horizontal-to-vertical spectral ratios (HVSR) using ground motion records from the Costa Rican Strong-Motion Database. The H/V ratios are estimated with 5% damped acceleration response spectra and with traditional Fourier amplitude spectra from the S-wave window. From the relation between VS30 and Tf, different ranges of Tf are assigned to the existing soil profile classification and a graph with three-lines and four-areas is proposed to classify the stations of the CRSMN.
En este artículo, se propone una nueva clasificación de sitio para la Red de Acelerógrafos de Costa Rica (RACR). Se utiliza como referencia la clasificación de sitio del Código Sísmico de Costa Rica basada en la velocidad promedio de la onda de corte de los 30 m superiores (VS30). El período fundamental del sitio (Tf) se incluye como parámetro para complementar la caracterización existente. Para ello, las mediciones de VS30 de 52 estaciones acelerométricas se relacionan con el período fundamental del sitio, este obtenido a partir de relaciones espectrales H/V utilizando registros de la Base de Datos de Movimiento Fuerte de Costa Rica. Las relaciones H/V se estiman con espectros de respuesta de aceleración con 5% de amortiguamiento y con espectros de amplitud de Fourier tradicionales obtenidos de la ventana de ondas S. A partir de la relación entre VS30 y Tf, fueron asignados diferentes rangos de Tf a la clasificación de perfil de suelo existente y se propone un gráfico con tres líneas y cuatro áreas para clasificar las estaciones de la RACR.
References
Alfaro, A., Pujades, L. G., Goula, X., Susagna, T., Navarro, M., Sanchez, J., & Canas, J. A. (2001). Preliminary map of soil’s predominant periods in Barcelona using microtremors. Pure and Applied Geophysics, 158, 2499–2511. DOI: 10.1007/PL00001182 DOI: https://doi.org/10.1007/PL00001182
ASCE (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-16).
BSSC (2003). Building Seismic Safety Council, NEHRP recommended provisions for seismic regulations for new buildings and other structures. Report FEMA-450 (Provisions), Federal Emergency Management Agency (FEMA). Washington D.C., United States
Cadet, H., Macau, A., Benjumea, B., Bellmunt, F., & Figueras, S. (2011) From ambient noise recordings to site effect assessment: The case study of Barcelona microzonation. Soil Dynamics and Earthquake Engineering, 31, 271–281. DOI: 10.1016/j.soildyn.2010.07.005 DOI: https://doi.org/10.1016/j.soildyn.2010.07.005
Caselles, J. O., Pérez-Gracia, V., Franklin, R., Pujades, L. G., Navarro, M., Clapes, J., Canas, J. A., García, F. (2010). Applying the H/V method to dense cities. A case study of Valencia city. Journal of Earthquake Engineering, 14, 192–210. DOI: 10.1080/13632460903086069 DOI: https://doi.org/10.1080/13632460903086069
CFIA (2016). Código Sísmico de Costa Rica 2010 (Revisión 2014). Editorial Tecnológica de Costa Rica, Cartago, Costa Rica.
Di Alessandro, C., Bonilla, L. F., Boore, D. M., Rovelli, A., & Scotti, O. (2012). Predominant-period site classification for response spectra prediction equations in Italy. Bulletin of the Seismological Society of America, 102, 680–695. DOI: 10.1785/0120110084 DOI: https://doi.org/10.1785/0120110084
Dobry, R., Borcherdt, R. D., Crouse, C. B., & Idriss, I. M. (2000) New Site Coefficients and Site Classification System Used in Recent Building Seismic Code Provisions. Earthquake Spectra, 16, 41–67. DOI: https://doi.org/10.1193/1.1586082
Douglas, J. (2017). Ground motion prediction equations 1964-2016. Glasgow, UK
Ghasemi, H., Zare, M., Fukushima, Y., & Sinaeian, F. (2009). Applying empirical methods in site classification, using response spectral ratio (H/V): A case study on Iranian strong motion network (ISMN). Soil Dynamics and Earthquake Engineering, 29, 121–132. DOI: 10.1016/j.soildyn.2008.01.007 DOI: https://doi.org/10.1016/j.soildyn.2008.01.007
Ghofrani, H., Atkinson GM (2014) Site condition evaluation using horizontal-to-vertical response spectral ratios of earthquakes in the NGA-West 2 and Japanese databases. Soil Dynamics and Earthquake Engineering, 67, 30–43. DOI: 10.1016/j.soildyn.2014.08.015 DOI: https://doi.org/10.1016/j.soildyn.2014.08.015
Hassani, B., & Atkinson, G. M. (2016). Applicability of the site fundamental frequency as a VS30 proxy for Central and Eastern North America. Bulletin of the Seismological Society of America, 106, 653–664. DOI: 10.1785/0120150259 DOI: https://doi.org/10.1785/0120150259
Moya-Fernández, A., Pinzón, L. A., Schmidt-Díaz, V., Hidalgo-Leiva, D. A., & Pujades, L. G. (2020). A Strong-Motion Database of Costa Rica: 20 Yr of Digital Records. Seismological Research Letters, 91, 3407–3416. DOI: 10.1785/0220200036 DOI: https://doi.org/10.1785/0220200036
Nagashima, F., Matsushima, S., Kawase, H., Sanchez-Sesma, F. J., Hayakawa, T., Satoh, T., & Oshima, M. (2014). Application of horizontal-to-vertical spectral ratios of earthquake ground motions to identify subsurface structures at and around the K-NET site in Tohoku, Japan. Bulletin of the Seismological Society of America, 104, 2288–2302. DOI: 10.1785/0120130219 DOI: https://doi.org/10.1785/0120130219
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30, 25–33.
Pinzón, L. A., Pujades, L. G., Macau, A., Carreño, E., & Alcalde, J. (2019a). Seismic Site Classification from the Horizontal-to-Vertical Response Spectral Ratios: Use of the Spanish Strong-Motion Database. Geosciences, 9, 294. DOI: 10.3390/geosciences9070294 DOI: https://doi.org/10.3390/geosciences9070294
Pinzón, L. A., Pujades, L. G., Macau, A., & Figueras, S. (2019b). Increased seismic hazard in Barcelona (Spain) due to soil-building resonance effects. Soil Dynamics and Earthquake Engineering, 117, 245–250. DOI: 10.1016/j.soildyn.2018.11.022 DOI: https://doi.org/10.1016/j.soildyn.2018.11.022
Protti, M., Gundell, F., & McNally, K. (1994). The geometry of the Wadati-Benioff zone under southern Central America and its tectonic significance: results from a high-resolution local seismographic network. Physics of the Earth and Planetary Interiors, 84, 271–287. DOI: 10.1016/0031-9201(94)90046-9 DOI: https://doi.org/10.1016/0031-9201(94)90046-9
Quintero, R., & Güendel, F. (2000). Stress field in Costa Rica, Central America. Journal of Seismology, 4, 297–319. DOI: 10.1023/A:1009867405248 DOI: https://doi.org/10.1023/A:1009867405248
Steidl, J. H. (2000). Site response in southern California for probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America, 90, 149–169. DOI: 10.1785/0120000504 DOI: https://doi.org/10.1785/0120000504
Wald, D. J., & Allen, T. I. (2007). Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97, 1379–1395. DOI: 10.1785/0120060267 DOI: https://doi.org/10.1785/0120060267
Zhao, J. X., Irikura, K., Zhang, J., Fukushima, Y., Somerville, P. G., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., & Ogawa, H. (2006) An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bulletin of the Seismological Society of America, 96, 914–925. DOI: 10.1785/0120050124 DOI: https://doi.org/10.1785/0120050124
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Luis A. Pinzón, Diego A. Hidalgo-Leiva, Rodrigo E. Alva, Miguel A. Mánica, Luis G. Pujades. (2023). Correlation between seismic intensity measures and engineering demand parameters of reinforced concrete frame buildings through nonlinear time history analysis. Structures, 57, p.105276. https://doi.org/10.1016/j.istruc.2023.105276.
2. Diego A. Hidalgo-Leiva, Lepolt Linkimer, Ivonne G. Arroyo, Mario Arroyo-Solórzano, Rosey Piedra, Alvaro Climent, Víctor Schmidt Díaz, Luis Carlos Esquivel, Guillermo E. Alvarado, Rolando Castillo, Marco E. Carranza-Morales, Laura Cerdas-Guntanis, Jimena Escalante-Meza, Sergio Lobo, María José Rodríguez, Wilfredo Rojas. (2023). The 2022 Seismic Hazard Model for Costa Rica. Bulletin of the Seismological Society of America, 113(1), p.23. https://doi.org/10.1785/0120220119.
3. Falak Zahoor, K. Seshagiri Rao, Bashir Ahmed Mir, Neelima Satyam. (2023). Geophysical surveys in the Kashmir valley (J&K Himalayas) part II: Anomalous seismic site-effects and exploration of alternative site classification schemes. Soil Dynamics and Earthquake Engineering, 174, p.108185. https://doi.org/10.1016/j.soildyn.2023.108185.
Dimensions
PlumX
Article abstract page views
Downloads
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.