Published
Sedimentological characteristics and their relationship with landsliding in the Bhilangana Basin, Garhwal Himalaya, India
Características sedimentológicas y su relación con los corrimientos de tierra en la cuenca de Bhilangana, Garhwal Himalaya, India
DOI:
https://doi.org/10.15446/esrj.v26n4.94720Keywords:
Landslide; particle size; clay minerolog; X-ray differaction; slope instability; Garhwal Himalaya; (en)deslizamiento de tierra; distribución del tamaño del grano; mineralogía de arcillas; difracción de rayos X; inestabilidad de pendiente; Garhwal Himalaya (es)
Downloads
Every year during the Indian Summer Monsoon, large landslides occur in the Lesser and the Greater Himalayan rock formations, triggered by intense rainfall episodes coupled with physiography and anthropogenic activities. The present study investigates the slope failure mechanism's relationship with slope material compositions. Hence, sediment samples of 25 landslides were collected along the road corridors. These samples were collected from the Lesser and Greater Himalayan ranges and rock formations. The sediment was collected from the active landslides to understand particle size, clay content, moisture content, mineral composition, crystallographic structures, and the influence of geomorphic processes on the landslide failure processes. The samples were analyzed using a sieve, X-ray Diffractometry (XRD), and Scanning electron microscopy (SEM) to accomplish the study's objectives. The analysis indicates that the Lesser Himalayan meta-sedimentary rock formations have a high composition of fine and medium-size particles, lesser quartz mineral compositions with calcite, and a highly crushed and fractured presence, conchoidal fractures types of morphological features. Micrographs obtained from the schist and phyllite rock of the Lesser Himalayan origin shows highly sheared and crushing, crystal overgrowth; and, in turn, have a higher susceptibility to landslides. The relationship between slope materials and instability has shown a definite pattern in the study area. The debris flow and slump have a comparatively higher percentage of clay and silt compared to debris fall, debris slide, and rockfall. The particle size composition of sediment collected from the slip zone is significantly related to the types of landslides. The present study is helpful in understanding the sediment composition and slope failure mechanism.
Cada año durante el verano monsónico en la India ocurren varios corrimientos de tierra en las formaciones rocosas de Lesser Himalayan y Greater Himalayan desencadenados por las intensas lluvias y afectados por actividades fisiográficas y antropogénicas. Este artículo investiga el mecanismo de falla de taludes y su relación con los materiales que componen el terreno. Con este fin se recolectaron muestras en 25 escenarios de corrimiento a lo largo de los corredores viales. Estas muestras se tomaron en las cordilleras y en las formaciones rocosas del Lesser Himalayan y del Greater Himalayan. El sedimento fue recolectado en corrimientos activos para analizar el tamaño de las partículas, el contenido de arcillas, la proporción de humedad, la composición mineral, las estructuras cristalográficas y la influencia de procesos geomórficos en los procesos de falla de los corrimientos. Las muestras fueron analizadas con cedazo, con difracción de rayos X y con microscopio electrónico de barrido para conseguir el objetivo del estudio. Los análisis indican que las rocas metasedimentarias de la formación del Lesser Himalayan tienen una composición alta de partículas de tamaño fino y medio, composiciones minerales bajas en cuarzo con calcita y una alta presencia de tipos de fracturas concoides, molidas y fracturadas, con características morfológicas. Las micrografías obtenidas de los esquistos y rocas de filita del Lesser Himalayan muestran cristales sobrecrecidos, cortados y molidos. Por ende, estos tienen una mayor susceptibilidad a corrimientos. La relación entre los materiales del terreno y la inestabilidad muestran un patrón definido en el área de estudio. El flujo de detritos y de materiales poco consolidados tienen un porcentaje comparativamente mayor de arcillas y cieno en comparación con los detritos caidos, detritos deslizados y rocas caidas. La composición del tamaño de la partícula del sedimento recolectado en la zona de caida está significativamente relacionado a los tipos de corrimientos. El presente estudio es útil para entender la composición del sedimento y el mecanismo de falla de taludes.
References
Azañón, J. M., Azor, A., Yesares, J., Tsige, M., Mateos, R. M., Nieto, F., Delgado, J., López-Chicano, M., Martín, W., & Rodríguez-Fernández, J. (2010). Regional-scale high-plasticity clay-bearing formation as controlling factor on landslides in Southeast Spain. Geomorphology, 120(1-2), 26-37. https://doi.org/10.1016/j.geomorph.2009.09.012 DOI: https://doi.org/10.1016/j.geomorph.2009.09.012
Barnard, P. L., Owen, L. A., Sharma, M. C., & Finkel, R. C. (2001). Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology, 40(1-2), 21-35. https://doi.org/10.1016/S0169-555X(01)00035-6 DOI: https://doi.org/10.1016/S0169-555X(01)00035-6
Bartarya, S., & Sah, M. (1995). Landslide induced river bed uplift in the Tal valley of Garhwal Himalaya, India. Geomorphology, 12(2), 109-121. https://doi.org/10.1016/0169-555X(94)00085-6 DOI: https://doi.org/10.1016/0169-555X(94)00085-6
Beguería, S. (2006). Changes in land cover and shallow landslide activity: A case study in the Spanish Pyrenees. Geomorphology, 74(1-4), 196-206. https://doi.org/10.1016/j.geomorph.2005.07.018 DOI: https://doi.org/10.1016/j.geomorph.2005.07.018
WEN, B., & CHEN, H. (2007). Mineral Compositions and Elements Concentrations as Indicators for the Role of Groundwater in the Development of Landslide Slip Zones: a Case Study of Large-scale Landslides in the Three Gorges Area in China. Earth Science Frontiers, 14(6), 98-106. https://doi.org/10.1016/S1872-5791(08)60006-8 DOI: https://doi.org/10.1016/S1872-5791(08)60006-8
Biscaye, P. E. (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803–832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
Bogaard, T., Guglielmi, Y., Marc, V., Emblanch, C., Bertrand, C., & Mudry, J. (2007). Hydrogeochemistry in landslide research: a review. Bulletin de la Societe Geologique de France, 178(2), 113–126. DOI:10.2113/gssgfbull.178.2.113 DOI: https://doi.org/10.2113/gssgfbull.178.2.113
Burbank, D.W., Leland, J., Brozovic, E.N., Reid, M.R. and Duncan, C. (1996). Bedrock Incision, Rock Uplift and Threshold Hillslopes in the Northwestern Himalayas. Nature, 379(6565), 505-510. https://doi.org/10.1038/379505a0 DOI: https://doi.org/10.1038/379505a0
Brunetti, M. T., Guzzetti, F., Cardinali, M., Fiorucci, F., Santangelo, M., Mancinelli, P., Komatsu, G., & Borselli, L. (2014). Analysis of a new geomorphological inventory of landslides in Valles Marineris, Mars. Earth and Planetary Science Letters, 405, 156-168. https://doi.org/10.1016/j.epsl.2014.08.025 DOI: https://doi.org/10.1016/j.epsl.2014.08.025
Brunet, M., Le Friant, A., Boudon, G., Lafuerza, S., Talling, P., Hornbach, M., Ishizuka, O., Lebas, E., & Guyard, H. (2016). Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: From volcano flank-collapse to seafloor sediment failure? Geochemistry, Geophysics, Geosystems, 17, 699–724. https://doi.org/10.1002/2015GC006034 DOI: https://doi.org/10.1002/2015GC006034
Brunsden, D., Jones, D. K. C., Martin, R. P., & Doornkamp, J. C. (1981). The geomorphic character of part of the Low Himalaya of eastern Nepal. Geomorphology, 37, 25-72.
Moral Cardona, J., Gutiérrez Mas, J., Sánchez Bellón, A., Domínguez-Bella, S., & Martínez López, J. (2005). Surface textures of heavy-mineral grains: a new contribution to provenance studies. Sedimentary Geology, 174(3-4), 223-235. https://doi.org/10.1016/j.sedgeo.2004.12.006 DOI: https://doi.org/10.1016/j.sedgeo.2004.12.006
Cafaro, F., & Cotecchia, F. (2001). Structure degradation and changes in themechanical behavior of a stiff clay due to weathering. Gèotechnique, 51(5), 441–453. https://doi.org/10.1680/geot.2001.51.5.441 DOI: https://doi.org/10.1680/geot.2001.51.5.441
Caputo, V., DiMaio, C., Brancucci, A., & Vassallo, R. (2004). The Spineto landslide: pore pressure measurements and analyses. Atti di convegni internazionali. IX Symposium on landslide. Rio de Janeiro, pp.577–582. DOI: https://doi.org/10.1201/b16816-83
Costa, P., Andrade, C., Mahaney, W., Marques da Silva, F., Freire, P., Freitas, M., Janardo, C., Oliveira, M., Silva, T., & Lopes, V. (2013). Aeolian microtextures in silica spheres induced in a wind tunnel experiment: Comparison with aeolian quartz. Geomorphology, 180-181, 120-129. https://doi.org/10.1016/j.geomorph.2012.09.011 DOI: https://doi.org/10.1016/j.geomorph.2012.09.011
Dill, H. (2007). Grain morphology of heavy minerals from marine and continental placer deposits, with special reference to Fe–Ti oxides. Sedimentary Geology, 198(1-2), 1-27. https://doi.org/10.1016/j.sedgeo.2006.11.002 DOI: https://doi.org/10.1016/j.sedgeo.2006.11.002
Dufresne, A., Bösmeier, A., & Prager, C. (2016). Sedimentology of rock avalanche deposits – Case study and review. Earth-Science Reviews, 163, 234-259. https://doi.org/10.1016/j.earscirev.2016.10.002 DOI: https://doi.org/10.1016/j.earscirev.2016.10.002
Glade, T. (2003). Landslide occurrence as a response to land use change: a review of evidence from New Zealand. CATENA, 51(3-4), 297-314. https://doi.org/10.1016/S0341-8162(02)00170-4 DOI: https://doi.org/10.1016/S0341-8162(02)00170-4
Goudie, A. S., & Watson, A. (1981). Shape of desert sand dune grains. Journal of Arid Environments, 4, 185–190. DOI: https://doi.org/10.1016/S0140-1963(18)31559-3
Helland, P., & Holmes, M. (1997). Surface textural analysis of quartz sand grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 135(1-4), 109-121. https://doi.org/10.1016/S0031-0182(97)00025-4 DOI: https://doi.org/10.1016/S0031-0182(97)00025-4
Hovius, N., Stark, C. P., Chu, H. T., & Lin, J. C. (2000). Supply and removal of sediment in a landslide dominated mountain belt: Central Range, Taiwan. The Journal of Geology, 108, 73-89. DOI: 10.1086/314387 DOI: https://doi.org/10.1086/314387
Israil, M., & Pachauri, A. (2003). Geophysical characterization of a landslide site in the Himalayan foothill region. Journal of Asian Earth Sciences, 22(3), 253-263. https://doi.org/10.1016/S1367-9120(03)00063-4 DOI: https://doi.org/10.1016/S1367-9120(03)00063-4
Kleesment, A. (2009). Roundness and surface textures of quartz grains in Middle Devonian deposits of East Baltic and their palaeogeographic implications. Estonian Journal of Earth Sciences, 58(1), 71–84. DOI: https://doi.org/10.3176/earth.2009.1.07
Krinsley, D. H., & Doornkamp, J. C. (1973). Atlas of Quartz Sand Surface Textures. Cambridge University Press, Cambridge, 91 pp.
Mahaney, W. (2015). Clay mineralogical evidence of a bioclimatically-affected soil, Rouge River basin, South-Central Ontario, Canada. Geomorphology, 228, 189-199. https://doi.org/10.1016/j.geomorph.2014.08.033 DOI: https://doi.org/10.1016/j.geomorph.2014.08.033
Mahaney, W. C., Stewart, A., & Kalm, V. (2001). Quantification of SEM microtextures useful in sedimentary environmental discrimination. Boreas, 30, 165–171. https://doi.org/10.1111/j.1502-3885.2001.tb01220.x DOI: https://doi.org/10.1080/030094801750203170
Mahaney, W. C. (2002). Atlas of Sand Grain Surface Textures and Applications. Oxford: Oxford Univ. Press, 237 pp.
Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3-4), 221-232. https://doi.org/10.1016/j.epsl.2008.07.020 DOI: https://doi.org/10.1016/j.epsl.2008.07.020
Moore, D. M., & Reynolds, R. C. (1989). X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, p. 332
Naqvi, S. M. (2005). Geology and Evolution of India Plate (from Hadean to Holocene-4Ga to 4Ka). Capital Publishing Company, Delhi
Owen, L. A., & Sharma, M. C. (1998). Rates and magnitudes of paraglacial fan formation in the Garhwal Himalaya: implications for landscape evolution. Geomorphology, 26(1-3), 171-184. https://doi.org/10.1016/S0169-555X(98)00057-9 DOI: https://doi.org/10.1016/S0169-555X(98)00057-9
Owen, L. A. (1991). Mass movement deposits in the Karakoram Mountains: their sedimentary characteristics, recognition and role in Karakoram landform evolution. Zeitschrift fur Geomorphologie, 35, 401-424. DOI: 10.1127/zfg/35/1991/401 DOI: https://doi.org/10.1127/zfg/35/1991/401
Owen, L. A., Benn, D. I., Derbyshire, E., Evans, D. J., Mitchell, W. A., Thompson, D., Richardson, S., Lloyd, M., & Holden, C. (1995). The geomorphology and landscape evolution of the Lahul Himalaya, Northern India. Zeitschrift fur Geomorphology, 39(2), 145-174. DOI: 10.1127/zfg/39/1995/145 DOI: https://doi.org/10.1127/zfg/39/1995/145
Pandey, V. K. (2011). Slope instability: causes and consequences of landslides in Bhilangana river basin, Uttarakhand Himalaya. [Ph.D. thesis, Jawaharlal Nehru University], New Delhi, India.
Pandey, V. K. (2015). Predictive landslide susceptibility assessment using the weight-of-evidence method in north-central Garhwal Himalaya, India. Physical Geography, 36(6), 510–536. https://doi.org/10.1080/02723646.2015.1116050 DOI: https://doi.org/10.1080/02723646.2015.1116050
Paul, S., Bartarya, S., Rautela, P., & Mahajan, A. (2000). Catastrophic mass movement of 1998 monsoons at Malpa in Kali Valley, Kumaun Himalaya (India). Geomorphology, 35(3-4), 169-180. https://doi.org/10.1016/S0169-555X(00)00032-5 DOI: https://doi.org/10.1016/S0169-555X(00)00032-5
Pye, K. (2007). Geological and soil evidence: forensic applications. Taylor & Francis Group. DOI: https://doi.org/10.1201/9781420004755
Regmi, A. D., Yoshida, K., Dhital, M. R., & Devkota, K. (2013). Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal. Landslides, 10, 1–13. https://doi.org/10.1007/s10346-011-0311-7 DOI: https://doi.org/10.1007/s10346-011-0311-7
Remondo, J., Soto, J., González-Díez, A., Díaz de Terán, J. R., & Cendrero, A. (2005). Human impact on geomorphic processes and hazards in mountain areas in northern Spain. Geomorphology, 66(1-4), 69-84. https://doi.org/10.1016/j.geomorph.2004.09.009 DOI: https://doi.org/10.1016/j.geomorph.2004.09.009
Rao, P. N., & Pati, U. C. (1982). Geology and Tectonics of Bhilangana valley and its adjoining parts, Garhwal Himalaya, with Special reference to Main Central Thrust. In: R. C. Mishra (Ed.). Himalayan Geology, Vo. 10 eds. Wadia Institute of Himalayan Geology, Dehradun, pp.220-233
Ruiz-villanueva, V., Allen, S. & Stoffel, M. (2016). Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography: Earth and Environment, 41(1), 1–26. https://doi.org/10.1177/0309133316658614 DOI: https://doi.org/10.1177/0309133316658614
Sakliani, P. S. (1989). Himalayan Mountain Building. Today and Tomorrow Printer and Publisher, New Delhi.
Scintag Inc. (1999). Basic of x-ray Diffraction.
Shi, X., Liu, S., Fang, X., Qiao, S., Khokiattiwong, S., & Kornkanitnan, N. (2015). Distribution of clay minerals in surface sediments of the western Gulf of Thailand: Sources and transport patterns. Journal of Asian Earth Sciences, 105, 390-398. https://doi.org/10.1016/j.jseaes.2015.02.005 DOI: https://doi.org/10.1016/j.jseaes.2015.02.005
Shroder, J. F., & Bishop, M. P. (1998). Mass movement in the Himalaya: new insights and research directions. Geomorphology, 26(1-3), 13-35. https://doi.org/10.1016/S0169-555X(98)00049-X DOI: https://doi.org/10.1016/S0169-555X(98)00049-X
Sridharan, A. (2001a). Engineering behaviour of clays: Influence of mineralogy. In: Di Maio, C., Hueckel, T., and Loret, B. (Ed.). Proceedings of the Workshop on Chemo-Mechanical Coupling in Clays. Nano-scale to Engineering Applications, Maratea, Potenza, Italy, pp.3–28. ISBN: 9058093840
Sridharan, A., & Prakash, K. (2001). Settling Behaviour and Clay Mineralogy. Soils and Foundations, 41(2), 105-109. https://doi.org/10.3208/sandf.41.2_105 DOI: https://doi.org/10.3208/sandf.41.2_105
Summa, V., Tateo, F., Giannossi, M., & Bonelli, C. (2010). Influence of clay mineralogy on the stability of a landslide in Plio-Pleistocene clay sediments near Grassano (Southern Italy). Catena, 80(2), 75-85. https://doi.org/10.1016/j.catena.2009.09.002 DOI: https://doi.org/10.1016/j.catena.2009.09.002
Summa, V., Margiotta, S., Colaiacovo, R., & Giannossi, M. L. (2015). The influence of the grain-size , mineralogical and geochemical composition on the Verdesca landslide. Natural Hazards and Earth System Sciences, 15, 135–146. https://doi.org/10.5194/nhess-15-135-2015 DOI: https://doi.org/10.5194/nhess-15-135-2015
Summa, V., Margiotta, S., Medici, L., & Tateo, F. (2018). Compositional characterization of fine sediments and circulating waters of landslides in the southern Apennines – Italy. Catena, 171, 199-211. https://doi.org/10.1016/j.catena.2018.07.009 DOI: https://doi.org/10.1016/j.catena.2018.07.009
Tandon, R. S., Gupta, V. & Sen, K. (2015). Seismic properties of naturally deformed quartzites of the Alaknanda valley, Garhwal Himalaya, India. Journal of Earth System Science, 124, 1159–1175. https://doi.org/10.1007/s12040-015-0605-6 DOI: https://doi.org/10.1007/s12040-015-0605-6
Tickell, F. G. (1965). The techniques of sedimentary mineralogy. Elsevier Publishing Company, Amsterdam
Torrance, J. (1999). Physical, chemical and mineralogical influences on the rheology of remoulded low-activity sensitive marine clay. Applied Clay Science, 14(4), 199-223. https://doi.org/10.1016/S0169-1317(98)00057-X DOI: https://doi.org/10.1016/S0169-1317(98)00057-X
Tucker, M. (1988). Techniques in Sedimentology. Blackball Scientific Publication, London
Valdiya, K. S. (1980). Geology of the Kumaun Lesser Himalaya. Dehra Dun, India: Wadia Inst. Himalayan Geol., 291 pp.
Vos, K., Vandenberghe, N., & Elsen, J. (2014). Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Science Reviews, 128, 93-104. https://doi.org/10.1016/j.earscirev.2013.10.013 DOI: https://doi.org/10.1016/j.earscirev.2013.10.013
Wang, G., & Sassa, K. (2003). Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Engineering Geology, 69(1-2), 109-125. https://doi.org/10.1016/S0013-7952(02)00268-5 DOI: https://doi.org/10.1016/S0013-7952(02)00268-5
Wiemer, G., Moernaut, J., Stark, N., Kempf, P., De Batist, M., Pino, M., Urrutia, R., de Guevara, B.L., Strasser, M., & Kopf, A. (2015). The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile. International Journal of Earth Sciences, 104, 1439–1457. https://doi.org/10.1007/s00531-015-1144-8 DOI: https://doi.org/10.1007/s00531-015-1144-8
Xiaomin, Z., Qianghu, L., Jiawang, G., Yanlei, D., Shifa, Z., Mingxuan, T., & Yong, Y. (2019). Reconstruction of sediment-dispersal patterns using seismic sedimentology in the southeastern Zhanhua Sag, Bohai Bay Basin, China. Journal of Petroleum Science and Engineering, 182, 106335. https://doi.org/10.1016/j.petrol.2019.106335 DOI: https://doi.org/10.1016/j.petrol.2019.106335
Xie, J., Coulthard, T. J., Wang, M., & Wu, J. (2022). Tracing seismic landslide-derived sediment dynamics in response to climate change. Catena, 217, 106495. https://doi.org/10.1016/j.catena.2022.106495 DOI: https://doi.org/10.1016/j.catena.2022.106495
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.