Published

2020-04-01

Study of involved fluids and geochemistry of rare earth elements of Aghbolagh copper deposit, in North Oshnavieh, West Azerbaijan Province of Iran

Estudio de inclusiones fluidas y geoquímica de elementos tierras raras del depósito cuprífero de Aghbolagh, al norte de Oshnavieh, en la provincia iraní de West Azerbaijan

DOI:

https://doi.org/10.15446/esrj.v24n2.83340

Keywords:

Aghbolagh, Oshnavieh, involved fluids, La/Y ratio, skarn, vein, (en)
Aghbolagh, Oshnavieh (Irán), inclusiones fluidas, proporción lantano/itrio, skarn, veta (es)

Downloads

Authors

Aghbolagh copper deposit is located in the southwest of West Azarbaijan Province, 10 km north of Oshnavieh city. Most of the existing rock outcrops in the area include Cambrian deposits (carbonated and clastic deposits). These deposits are metamorphosed by intrusive-granite masses (skarn-genesis). The infiltration of the mineralization solution at distances beyond contact and inside the sandstone sequences has resulted in the formation of copper ore veins. For microscopic and geochemical studies, 21 thin sections, and 22 doubly-polished cross-sections, 22 XRD specimens, 22 ICP-MS specimens, and three samples for analysis of 10 oxides were analyzed by Zarazma Corporation. In the study of the fluids involved, measurements were made using a Linkham THMSG600 heater and freezer plate, mounted on a polarized microscope with a separate stage and Olympus model. Studies on quartz minerals (3 samples) and garnet minerals (2 samples) were performed on five polished double sections by micro-thermometry measurements on 30 inclusion in quartz mineral and 15 inclusion in garnet mineral at Rizkavan Land Company. The results show that the La/Y ratio, which is a proper indicator for the pH conditions of the formation environment of ore deposit, in Aghbolagh deposit is a range from 0.09 to 2.26. The granite mass has the highest amount, and the skarn zone represents two types of conditions. Type 1: Section where the La/Y> 1 ratio observed in samples close to the skarn mass and ore. Type 2: Part where the ratio La/Y <1 is close to marble lithology. In the case of a vein deposit, the samples have mineralization under alkaline conditions, and other samples show acidic conditions. The examination of fluid inclusions determined two main groups of fluids in this mineralization system. Group 1: Supersaturated fluids of salt, which is the origin of halite multiphase inclusions in the garnet ore during the progressive skarn alteration process. Group 2: Salt-saturated fluids, which are the source of fluid-rich two-phase intermediates in the garnet and quartz minerals, and have been effective in regressive alteration in the skarn system.

El depósito cuprífero de Aghbolagh se localiza en el sudeste de la provincia de West Azerbaijan, 10 kilómetros al norte de la ciudad iraní de Oshnavieh. Los afloramientos rocosos en el área incluyen depósito del Cámbrico (carbonatados y clásticos. Estos depósitos fueron transformados por masas intrusivas de granito (génesis del skarn). La infiltración de soluciones de mineralización a distancias más allá del punto de contacto y al interior de secuencias de arenisca resultaron en la formación de vetas de cobre. Para los estudios microscópicos y geoquímicos se analizaron 21 secciones delgadas y 22 secciones transversales doblemente pulidas, 22 muestras para análisis de difracción de rayos X, 22 muestras para análisis de espectrometría de masas por plasma acoplado inductivamente, y tres muestras para el análisis de 10 óxidos, que fueron procesados en los laboratorios de Zarazma Corporation. En el estudio de la inclusiones fluidas, las mediciones se hicieron con una bandeja de calentamiento y enfriamiento Linkham THMSG600, montada en un microscopio polarizado modelo Olympus. Para los estudios en minerales de cuarzo (tres muestras) y de granate (dos muestras) se utilizaron cinco secciones doblemente pulidas donde se hicieron las medidas de microtermometría para treinta inclusiones en minerales de cuarzo y quince inclusiones en minerales de granate en los laboratorios de Rizkavan Land Company. Los resultados muestran que la proporción de lantano/itrio, que es un indicador apropiado para establecer las condiciones de alcalinidad en el ambiente de formación del depósito mineral, en el depósito de Aghbolagh se encuentra en un rango de 0.09-2.26. La masa de granito registra una mayor proporción, mientras que en la zona del skarn se presentan dos condiciones diferentes. Tipo 1: sección donde la proporción lantano/itrio es superior a 1 en las muestras cercanas a la masa de skarn. Tipo 2: la sección donde la proporción lantano/itrio es inferior a 1 en la litología del mármol. Para el caso de la veta, las muestras tienen una mineralización bajo condiciones alcalinas mientras que otras muestras tienen condiciones de acidez. El examen de las inclusiones fluidas determinó dos grupos principales de fluidos en este sistema de mineralización. Grupo 1: Fluidos supersaturados de sal, que es el origen de las inclusiones multifásicas de halita en el granate durante el progresivo proceso de alteración del skarn. Grupo 2: Fluidos saturados de sal, que son la fuente de fluidos ricos de dos fases intermedias en los minerales de cuerzo y granate, y que han sido efectivos en la alteración regresiva del sistema de skarn.

References

Adriana, H., Paul, G. S., Graham, S. T., Colin, H. H., & Wolfgang, R. L. (2009). Geochemistry of garnet-rich rocks in the southern Curnamona Province, Australia, and their genetic relationship to Broken Hill-type Pb-Zn-Ag mineralization. Economic Geologists, 104, 687-712.

Aubert, D., Stille, P., & Probst, A. (2001). REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta, 65, 387–406.

Bakker, R. J. (2003). Package FLUIDS 1. Computer programs for the analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194, 3–23.

Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P., (Ed.), Rare Earth Element Geochemistry, Elsevier, Amsterdam, 63-114.

Cox, D. P. (1986). Descriptive model of Zn-Pbskarn deposits, in Cox, D.P. and Singer, D.A. (Eds.) Mineral deposit models: U.S. Geological Survey Bulletin 1693, p. 90.

Cox, K. G., Bell, J. D., & Pankhurst, R. J. (1979). The Interpretation of Igneous Rocks. George, Allen and Unwin, London.

Crinci, J., & Jurkowic, I . (1990). Rare earth elements in Triassic bauxites of Croatia Yugoslavia. Travaux 19, 239–248.

De La Roche, H., Leterrier, J., Grandcloud, P., & Marchel, M. (1986). A classification of volcanic and plutonic rocks using R1–R2 diagrams and major elements relationship with current nomenclature. Chemical Geology, 28, 183– 210.

Ghalam, G. J., Houshmand, M. S., & Vosoughi, A. M. (2011). Geology, Geochemistry and Petrogenesis of the Oshnavieh Intrusion (North-West of Iran). Journal of Earth Sciences, 88, 219- 232.

Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-547.

Kato, Y. (1999). Rare earth elements as an indicator to origins of skarn deposits, example of the Kamioka Zn-Pb and Yoshiwara-Sannotake (Cu-Fe) deposit in Japan. Resource Geology, 49, 183–198.

Kesler, S. E. (2005). Ore-forming fluids. Elements, 1, 13–18.

Kikawada, Y. (2001). Experimental studies on the mobility of lanthanides accompanying alteration of andesite by acidic hot spring water. Chemical Geology, 176, 137–149.

Moein, V. H., & Ahmadi, A. (2001). Petrography and Petrology of igneous age of veins. Tarbiat Moallem University, Tehran.

Morris, H. T. (1986). Descriptive model of polymetallic replacement deposits. In: Cox, D. P., & Singer, D. A., (eds). Mineral deposit models: U.S. Geological Survey Bulletin 1693, p. 99-100.

Naghizadeh (2004). 1: 100000 Geological map of Oshnavieh, Geological Organization and Minaral discoveries of County.

Pearce, J. A., Harris, B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petroleum Science and Engineering, 25, 956-983.

Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81.

Schandl, E. S., & Gorton, M. P. (2002). application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 97, 629-642.

Shand, S. J. (1943). Eruptive Rocks. Their genesis, composition, classification and their relation to deposits. Thomas Murby and Co, London, pp.448.

Tabatabaiemanesh, S. M., Mirlohi, A., & Movahedi, M. (2011). Petrology and mineral chemistry of Ochestan granitoids (south of Mahallat, Markazi province). Petrology 2(7), 51-76 (in Persian).

Taylor, B. E. (1976). Origin and significance of C-O-H fluids in the formation of Ca-Fe-Si skarn, Osgood Mountains, Humboldt County, Nevada. Unpublished Ph.D. thesis, Stanford, CA, Stanford University, 149 p.

Villaseca, C., Barbero, L., & Rogers, G. (1998). Crustal origin of Hercynianperaluminous granitic batholiths of central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos, 43, 55-79.

Wilkinson, J. J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229-272.

Wood, S. A. (1990). The aqueous geochemistry of the rare-earth elements and Yttrium. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chemical Geology, 88, 99–125.

Yusoff, Z. M., Ngwenya, B. T. & Parsons, I. (2013). Mobility and fractionation or REE during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology, 349–350, 71–86.

Zamanian, H. (2003). Iron mineralization related to the Almoughlagh and south Ghorveh batholiths with specific refrenceti the Baba Ali and Gelali deposits. University of Pune, 220 pp.

Zamanian, H. & Radmard, K. (2016). Geochemistry of rare earth elements in the Baba Ali magnetite skarn deposit, western Iran- a key to determine conditions of mineralization. Geologos, 22(1), 33-47.

How to Cite

APA

Dana, K., Nezafati, N. and Vossoughi Abedini, M. (2020). Study of involved fluids and geochemistry of rare earth elements of Aghbolagh copper deposit, in North Oshnavieh, West Azerbaijan Province of Iran. Earth Sciences Research Journal, 24(2), 231–243. https://doi.org/10.15446/esrj.v24n2.83340

ACM

[1]
Dana, K., Nezafati, N. and Vossoughi Abedini, M. 2020. Study of involved fluids and geochemistry of rare earth elements of Aghbolagh copper deposit, in North Oshnavieh, West Azerbaijan Province of Iran. Earth Sciences Research Journal. 24, 2 (Apr. 2020), 231–243. DOI:https://doi.org/10.15446/esrj.v24n2.83340.

ACS

(1)
Dana, K.; Nezafati, N.; Vossoughi Abedini, M. Study of involved fluids and geochemistry of rare earth elements of Aghbolagh copper deposit, in North Oshnavieh, West Azerbaijan Province of Iran. Earth sci. res. j. 2020, 24, 231-243.

ABNT

DANA, K.; NEZAFATI, N.; VOSSOUGHI ABEDINI, M. Study of involved fluids and geochemistry of rare earth elements of Aghbolagh copper deposit, in North Oshnavieh, West Azerbaijan Province of Iran. Earth Sciences Research Journal, [S. l.], v. 24, n. 2, p. 231–243, 2020. DOI: 10.15446/esrj.v24n2.83340. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/83340. Acesso em: 15 jul. 2024.

Chicago

Dana, Kamal, Nima Nezafati, and Mansuor Vossoughi Abedini. 2020. “Study of involved fluids and geochemistry of rare earth elements of Aghbolagh copper deposit, in North Oshnavieh, West Azerbaijan Province of Iran”. Earth Sciences Research Journal 24 (2):231-43. https://doi.org/10.15446/esrj.v24n2.83340.

Harvard

Dana, K., Nezafati, N. and Vossoughi Abedini, M. (2020) “Study of involved fluids and geochemistry of rare earth elements of Aghbolagh copper deposit, in North Oshnavieh, West Azerbaijan Province of Iran”, Earth Sciences Research Journal, 24(2), pp. 231–243. doi: 10.15446/esrj.v24n2.83340.

IEEE

[1]
K. Dana, N. Nezafati, and M. Vossoughi Abedini, “Study of involved fluids and geochemistry of rare earth elements of Aghbolagh copper deposit, in North Oshnavieh, West Azerbaijan Province of Iran”, Earth sci. res. j., vol. 24, no. 2, pp. 231–243, Apr. 2020.

MLA

Dana, K., N. Nezafati, and M. Vossoughi Abedini. “Study of involved fluids and geochemistry of rare earth elements of Aghbolagh copper deposit, in North Oshnavieh, West Azerbaijan Province of Iran”. Earth Sciences Research Journal, vol. 24, no. 2, Apr. 2020, pp. 231-43, doi:10.15446/esrj.v24n2.83340.

Turabian

Dana, Kamal, Nima Nezafati, and Mansuor Vossoughi Abedini. “Study of involved fluids and geochemistry of rare earth elements of Aghbolagh copper deposit, in North Oshnavieh, West Azerbaijan Province of Iran”. Earth Sciences Research Journal 24, no. 2 (April 1, 2020): 231–243. Accessed July 15, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/83340.

Vancouver

1.
Dana K, Nezafati N, Vossoughi Abedini M. Study of involved fluids and geochemistry of rare earth elements of Aghbolagh copper deposit, in North Oshnavieh, West Azerbaijan Province of Iran. Earth sci. res. j. [Internet]. 2020 Apr. 1 [cited 2024 Jul. 15];24(2):231-43. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/83340

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Song Wei, Feng Geng. (2021). Deepwater gas concentration feature extraction based on fluid mechanics. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06868-z.

Dimensions

PlumX

Article abstract page views

445

Downloads

Download data is not yet available.