Published
Geospatial assessment of eco-environmental changes in desertification area of the Brazilian semi-arid region
Evaluación geoespacial de los cambios ecoambientales en el área de desertificación de la región semiárida brasileña
DOI:
https://doi.org/10.15446/esrj.v22n3.69904Keywords:
Zoning, soil management, erosion, semi-arid zone (en)Zonificación, manejo del suelo, erosión, zona semiárida (es)
Downloads
Los modelos de predicción del cambio ecológico ambiental son herramientas de decisión importantes para los responsables de la formulación de políticas, ya que ayudan a cuantificar la sensibilidad ambiental y comprenden la relación entre las actividades humanas y la calidad ambiental. Por lo tanto, este artículo tiene como objetivo analizar los cambios ecológicos en el condado de Monteiro, una zona semiárida en el noreste de Brasil. Este estudio utilizó medios de imágenes satelitales, sistema de información geográfica y técnicas del sistema de posición global, mapas topográficos, datos climáticos y mapas de suelos, así como datos de encuestas de campo. Los resultados fueron evaluados en su capacidad para predecir con precisión las áreas más y menos sensibles. Los resultados mostraron que los cambios en la cobertura terrestre han modificado el medio ambiente en general, y se han identificado dos procesos importantes de degradación ambiental: la degradación de la tierra y la baja pérdida de suelo. La pérdida media de suelo aumentó de 0.09 t ha-¹ año-¹ en 1987 a 0.18 t ha-¹ año-¹ en 2010, como un efecto del aumento de la vegetación y particularmente la conversión de miles de kilómetros cuadrados de bosque Tropophile de pendiente media y tierra estéril en la llanura del bosque Tropophile y el bosque alto Tropophile. Por lo tanto, este estudio proporciona información sobre el ordenamiento territorial y la gestión de los servicios ambientales con una perspectiva regional.
References
Al-Awadhi, J.M., Omar, S.A. & Misak, R.F. (2005). Land degradation indicators in Kuwait. Land Degradation and Development, 16(2):163–176.
Anache, J.A.A., Wendland, E.C., Oliveira, P.T.S., Flanagan, D.C. & Nearing, M.A. (2017). Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience. Catena, 152, 29–39. doi: https://doi.org/10.1016/j.catena.2017.01.003
Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., Van Liew, M.W., Kannan, N. & Jha, M.K. (2012). SWAT: model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508.
Barbosa, H.A., Huete, A.R. & Baethgen, W.E. (2006). A 20-year study of NDVI variability over the Northeast Region of Brazil. Journal of Arid Environments, 67(2), 288–307. doi: https://doi.org/10.1016/j.jaridenv.2006.02.022
Beskow, S., Mello, C.R., Norton, L.D., Curi, N., Viola, M.R. & Avanzi, J.C. (2009). Soil erosion prediction in the Grande River Basin, Brazil using distributed modelling. Catena 79(1), 49–59. doi: https://doi.org/10.1016/j.catena.2009.05.010
Beuchle, R., Grecchi, R.C., Shimabukuro, Y.E, Seliger, R., Eva, H.D., Sano, E. & Achard, F. (2015). Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Applied Geography, 58(2), 116127. doi: https://doi.org/10.1016/j.apgeog.2015.01.017
Braga, A.C.F.M., Silva, R.M., Santos, C.A.G., Galvão, C.O. & Nobre, P. (2013). Downscaling of a global climate model for estimation of runoff, sediment yield and dam storage: A case study of Pirapama basin, Brazil. Journal of Hydrology, 498(1), 46–58. doi: https://doi.org/10.1016/j.jhydrol.2013.06.007
Brito Neto, R.T., Santos, C.A.G., Mulligan, K. & Barbato, L. (2016) Spatial and temporal water-level variations in the Texas portion of the Ogallala Aquifer. Natural Hazards, 80(1), 351–365. doi: https://doi.org/10.1007/s11069-015-1971-8
Cerdá, A., Giménez-Morera, A. & Bodí, M.B. (2009). Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Ea Earth Surface Processes and Landforms, 34(13), 1822–1830. doi: https://doi.org/10.1002/esp.1889
Coelho, V.H.R., Montenegro, S.M.G.L., Almeida, C.N., Lima, E.R.V., Ribeiro Neto, A. & Moura, G.S.S. (2014). Dynamic of land use/cover change processes in a Brazilian semiarid watershed. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(1), 64–72. doi: https://doi.org/10.1590/S1415-43662014000100009
Costa, C.A.G., Lopes, J.W.B., Pinheiro, E.A.R., Araújo, J.C. & Gomes Filho, R.R. (2013). Spatial behaviour of soil moisture in the root zone of the Caatinga biome. Revista Ciência Agronômica, v. 44, n. 4, p. 685–694.
Costa, T.C.C., Oliveira, M.A.J., Accioly, L.J.O. & Silva, F.H.B.B. (2009). Analysis of degradation of ‘Caatinga’ in the desertification nucleus of Seridó – Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, 13, 961–974. doi: https://doi.org/10.1590/S1415-43662009000700020
da Silva, A.M. (2004) Rainfall erosivity map for Brazil. Catena, 57(2), 251–259. doi: https://doi.org/10.1016/j.catena.2003.11.006
de Oliveira, L.B., Fontes, M.P.F., Ribeiro, M.R. & Ker, J.C. (2009). Morphology and classification of luvisols and planosols developed on metamorphic rocks in semiarid northeastern Brazil. Brazilian Journal of Soil Science, 3(5), :1333–1345. doi: https://doi.org/10.1590/S0100-06832009000500026
de Queiroz, J.S. & Norton, B.E. (1992). An assessment of an indigenous soil classification used in the caatinga region of Ceará State, Northeast Brazil. Agricultural Systems, 39(3), 289–305. doi: https://doi.org/10.1016/0308-521X(92)90101-S
de Roo, A.P.J. & Jetten, V. (1999). Calibrating and validating the LISEM model for two data sets from the Netherlands and South Africa. Catena, 37(5), 477–493. doi: https://doi.,org/10.1016/S0341-8162(99)00034-X
dos Santos, J.C.N., Andrade, E.M., Guerreiro, M.J.S., Medeiros, P.H.A., Palácio, H.A.Q. & Araújo Neto, J.R. (2016). Effect of dry spells and soil cracking on runoff generation in a semiarid micro watershed under land use change. Journal of Hydrology, 541, Part B, 1057–1066. doi: https://doi.org/10.1016/j.jhydrol.2016.08.016
ESRI – Arc Map Version 10.2 (2015). User Manual. ESRI, 380 New York Street, Redlands, CA, 92373-8100, USA.
FAO/UNESCO Food and Agriculture Organization of the United Nations (1988). Soil map of the world, revised legend. World Soil Resources. Rep. 60, FAO, Rome.
Flanagan, D.C., Frankenberger, J.R. & Ascough II, J.C. (2012). WEPP: model use, calibration, and validation. Transactions of the ASABE, 55(4), 1463–1477.
Garcia, A.S. & Ballester, M.V.R. (2016). Land cover and land use changes in a Brazilian Cerrado landscape: drivers, processes, and patterns. Journal of Land Use Science, 11(5), 538–559. doi: https://doi.org/10.1080/1747423X.2016.1182221
Gopinath, T.R. & Lima, A.A. (2011). Modeling and mining of bentonite deposits Boavista region, Paraíba. Available in: www.brasilminingsite.com.br/anexos/artigos/12_0.pdf.
Huhn, S.R.B., Sousa, M.J., Souza Filho, C.R. & Monteiro, L.V.S. (2014). Geology of the Riacho do Pontal iron oxide copper-gold (IOCG) prospect, Bahia, Brazil: hydrothermal alteration approached via hierarchical cluster analysis. Brazilian Journal of Geology, 44(2), 309–324. doi: https://doi.org/10.5327/Z2317-4889201400020010
Lal, R. (1986). Soil surface management in the tropics for intensive land use and high and sustained production. In: Stewart ED. Advances in soil science, Volume 5, 109p.
Lima, V.R.P. (2012). Caracterización biogeográfica del bioma Caatinga en el sector semiárido de la cuenca del Río Paraíba – Noreste de Brasil: propuesta de ordenación y gestión de un medio semiárido tropical. Ph.D. Thesis, Sevilla University, Spain.
Lima, V.R.P. & Artigas, R.C. (2013). Management proposal for the conservation and management of natural resources in Caatinga Biome. Mercator, 12(29), 191–210. doi: https://doi.org/10.4215/RM2013.1229.0013
Lima, V.R.P. & Artigas, R.C. (2014). Caracterización de las formaciones vegetales de la caatinga del Carirí (Paraíba, Brasil). In: Artigas, R.C., Pérez, B.R., Gómez, J.L.M. (Org.). Biogeografia de Sistema Litorales: dinámicas y conservación. Sevilla, 143–152.
Manfré, L.A., da Silva, A.M., Urban, R.C., Rodgers, J. (2013). Environmental fragility evaluation and guidelines for environmental zoning: a study case on Ibiuna (the Southeastern Brazilian region). Environmental Earth Sciences, 69(3), 947–957. doi: https://doi.org/10.1007/s12665-012-1979-2
Mansur, R.R., Nogueira, C. & Barbosa, D.C.A. (2000). Comportamento fisiológico em plantas jovens de quatro espécies lenhosas da caatinga submetidas a dois ciclos de estresse hídrico. Phyton, International Journal of Experimental Botany, 68, 97–106.
Maranhão, K.U.A. (2014). O zoneamento ambiental do município de Monteiro, Paraíba. MSc. Thesis. Universidade Federal da Paraíba, Brazil.
Mohamed, E.S. (2013). Spatial assessment of desertification in north Sinai using modified MEDLAUS model. Arabian Journal of Geosciences, 6(12), 4647–4659. doi: https://doi.org/10.1007/s12517-012-0723-2
Mohamed, E.S., Schütt, B. & Belal A. (2013). Assessment of environmental hazards in the north western coast-Egypt using RS and GIS. The Egyptian Journal of Remote Sensing and Space Science, 16(2), 219–229. doi: https://doi.org/10.1016/j.ejrs.2013.11.003
Montenegro, A.A.A., Abrantes, J.R.C.B., de Lima, J.L.M.P., Singh, V.P. & Santos, T.E.M. (2013) Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena, 109(1),139–149. doi: https://doi.org/10.1016/j.catena.2013.03.018
Moore, I.D. & Burch, G. (1986). Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Science Society of America Journal, 50(5), 1294–1298. doi: https://doi.org/10.2136/sssaj1986.03615995005000050042x
Portillo-Quintero, C., Sanchez-Azofeifa, A. & Espirito-Santo, M.M. (2013). Monitoring deforestation with MODIS Active Fires in Neotropical dry forests: An analysis of local-scale assessments in Mexico, Brazil and Bolivia. Journal of Arid Environments, 97(1), 150–159. doi: https://doi.org/10.1016/j.jaridenv.2013.06.002
Puyravaud, J.P. (2003). Standardizing the calculation of the annual rate of deforestation. Forest Ecology and Management, 177(1–3), 593–596. doi: https://doi.org/10.1016/s0378-1127(02)00335-3
Rao, V.B., Franchito, S.H., Santo, C.M. & Gan, M.A. (2016). An update on the rainfall characteristics of Brazil: seasonal variations and trends in 1979-2011. International Journal of Climatology, 36(1), 291–302. doi: https://doi.org/10.1002/joc.4345
Ribeiro, K., de Sousa-Neto, E.R., de Carvalho Junior, J.A., Lima, J.R.S., Menezes, R.S.C., Duarte-Neto, P.J., Guerra, G.S. & Ometto, J.P.H.B. (2016). Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga. Science of the Total Environment. 571, 1048–1057. doi: https://doi.org/10.1016/j.scitotenv.2016.07.095
Salazar, A., Baldi, G., Hirota, M., Syktus, J. & McAlpine, C. (2015). Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review. Global and Planetary Change, 128, 103–119. doi: https://doi.org/10.1016/j.gloplacha.2015.02.009
Santos, C.A.G., da Silva, R.M., Silva, A.M. & Brasil Neto, R.M. (2017). Estimation of evapotranspiration for different land covers in a Brazilian semi-arid region: A case study of the Brígida River basin, Brazil. Journal of South American Earth Sciences, 74, 54–66. doi: https://doi.org/10.1016/j.jsames.2017.01.002
Schucknecht, A., Erasmi, S., Niemeyer, I. & Matschullat, J. (2013). Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. European Journal of Remote Sensing, 46(1), 4059. doi: https://doi.org/10.5721/EuJRS20134603
Schulz, C., Koch, R., Cierjacks, A. & Kleinschmit B. (2017). Land change and loss of landscape diversity at the Caatinga phytogeographical domain – Analysis of pattern-process relationships with MODIS land cover products (2001–2012). Journal of Arid Environments, 136, 54–74. doi: https://doi.org/10.1016/j.jaridenv.2016.10.004
Shao, H., Liu, M., Shao, Q., Sun, X., Wu, J., Xiang, Z. & Yang, W. (2014). Research on eco-environmental vulnerability evaluation of the Anning River Basin in the upper reaches of the Yangtze River. Environmental Earth Sciences, 72(5), 1555–1568. doi: https://doi.org/10.1007/s12665-014-3060-9.
Silva, A.B., Resende, M., Sousa, A.R. & Margolis, E. (1999). Soil mobilization, erosion and corn and bean yields in a regosol on the Pernambuco state dry area. Pesquisa Agropecuária Brasileira, 34(2), 299–307. doi: https://doi.org/10.1590/S0100-204X1999000200018
Silva, G.L., Lima, H.V., Campanha, M.M., Gilkes, R.J. & Oliveira, T.S. (2011). Soil physical quality of Luvisols under agroforestry, natural vegetation and conventional crop management systems in the Brazilian semi-arid region. Geoderma, 167168, 61–70. doi: https://doi.org/10.1016/j.geoderma.2011.09.009
Silva, R.M., Montenegro, S.M.G.L. & Santos, C.A.G. (2012). Integration of GIS and remote sensing for estimation of soil loss and prioritization of critical sub-catchments: a case study of Tapacurá catchment. Natural Hazards, 62(3), 953–970. doi: https://doi.org/10.1007/s11069-012-0128-2
Silva, R.M., Santos, C.A.G., Moreira, M., Corte-Real, J., Silva, V.C.L. & Medeiros, I.C. (2015). Rainfall and river flow trends using Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Natural Hazards, 77(2), 1205–1221. doi: https://doi.org/10.1007/s11069-015-1644-7
Silva, V.P.R., (2004). On climate variability in Northeast of Brazil. Journal of Arid Environments, 58(4), 575–596. doi: https://doi.org/10.1016/j.jaridenv.2003.12.002
Sousa, F.P., Ferreira, T.O., Mendonça, E.S.¸ Romero, R.E. & Oliveira, J.G.B. (2012). Carbon and nitrogen in degraded Brazilian semi-arid soils undergoing Desertification. Agriculture, Ecosystems and Environment, 148(1), 11– 21. doi: https://doi.org/10.1016/j.agee.2011.11.009
Souza, Z.S., Nascimento, M.A.L., Barbosa, R.V.N. & Dias, L.G.S. (2005). Geology and tectonics of the Boa Vista Basin (Paraíba, northeastern Brazil) and geochemistry of associated Cenozoic tholeiitic magmatism. Journal of South American Earth Sciences, 18(3–4), 391–405. doi: https://doi.org/10.1016/j.jsames.2004.11.007
Srinivasan, V.S. & Galvão, C.O. (1995). Evaluation of runoff and erosion loss in micro-basins utilizing the hydrodynamic model WESP. Advances in Engineering Software, 22(2), 79–85. doi: https://doi.org/10.1016/0965-9978(95)00014-N
Srinivasan, V.S. & Paiva, F.M.L. (2009). Regional validity of the parameters of a distributed runoff-erosion model in the semi-arid region of Brazil. Science in China Series E: Technological Sciences, 52(11), 3348–3356. doi: https://doi.org/10.1007/s11431-009-0345-4
Williams, J.R. (1995). The EPIC Model. In: Singh V. (Ed.) Computer models of watershed hydrology. Chapter 25. Water Resources Publications, Highlands Ranch, 909–1000.
Wischmeier, W.H. & Smith, D.D. (1965). Predicting rainfall erosion losses. Admin. U.S. Department of Agriculture. Washington, Agriculture Handbook Science and Education 357, 58p.
Woolhiser, D.A., Smith, R.E. & Goodrich, D.C. (1990). KINEROS, a Kinematic Runoff and Erosion Model: Documentation and User Manual. U.S. Department of Agriculture, Agricultural Research Service, ARS-77, 130p.
Zhang, R., Santos, C.A.G., Moreira, M., Freire, P.K.M.M. & Corte-Real, J. (2013). Automatic calibration of the SHETRAN hydrological modelling system using MSCE. Water Resources Management, 27(11), 4053–4068. doi: https://doi.org/10.1007/s11269-013-0395-z
Zhang, Y., Degroote, J., Wolter, C. & Sugumaran, R. (2009). Integration of Modified Universal Soil Loss Equation (MUSLE) into a GIS framework to assess soil erosion risk. Land Degradation and Development, 20(1), 84–91. doi: https://doi.org/10.1002/ldr.893
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Carolyne W. L. Andrade, Suzana M. G. L. Montenegro, Abelardo A. A. Montenegro, José R. de S. Lima, Raghavan Srinivasan, Charles A. Jones. (2021). Climate change impact assessment on water resources under RCP scenarios: A case study in Mundaú River Basin, Northeastern Brazil. International Journal of Climatology, 41(S1) https://doi.org/10.1002/joc.6751.
2. Yu Liu, Tingting Huang, Zhiyuan Qiu, Zilong Guan, Xiaoyi Ma. (2024). Effects of precipitation changes on fractional vegetation cover in the Jinghe River basin from 1998 to 2019. Ecological Informatics, 80, p.102505. https://doi.org/10.1016/j.ecoinf.2024.102505.
3. Leonardo Bohn, Gustavo Bastos Lyra, José Francisco Oliveira‐Júnior, Marcelo Zeri, Gisleine Cunha‐Zeri. (2021). Desertification susceptibility over Rio de Janeiro, Brazil, based on aridity indices and geoprocessing. International Journal of Climatology, 41(S1) https://doi.org/10.1002/joc.6869.
4. Carlos Alberto Valera, Teresa Cristina Tarlé Pissarra, Adriana Monteiro da Costa, Luís Filipe Sanches Fernandes, Fernando António Leal Pacheco. (2024). The soil conservation agenda of Brazil: A review of “edge-to-edge” science contributions. Science of The Total Environment, 954, p.176355. https://doi.org/10.1016/j.scitotenv.2024.176355.
5. Xuan Wei, Lihua Zhou, Guojing Yang, Ya Wang, Yong Chen. (2020). Assessing the Effects of Desertification Control Projects from the Farmers’ Perspective: A Case Study of Yanchi County, Northern China. International Journal of Environmental Research and Public Health, 17(3), p.983. https://doi.org/10.3390/ijerph17030983.
6. Kelly Krampe Peres, Ricardo Guicho, Gabriela Medeiros, Mailor Wellinton Wedig Amaral, Thaís Tagliati da Silva, Maria Clara Pilatti, Maritane Prior, Norma Catarina Bueno. (2022). Environmental fragility as an indicator of the risk of contamination by human action in watersheds used for public supply in western Paraná, Brazil. Environmental Earth Sciences, 81(20) https://doi.org/10.1007/s12665-022-10619-y.
7. Wenhu Zhang, Juan Ran. (2023). Tracking and monitoring of suspended sediment diffusion generated during the trenching of submarine pipeline in Northern Beibu Gulf. Ships and Offshore Structures, 18(11), p.1528. https://doi.org/10.1080/17445302.2022.2126154.
8. Bruno Fonseca da Silva, Rodrigo Zimmerle dos Santos Rodrigues, Janne Heiskanen, Temesgen Alemayehu Abera, Suelen Cristina Gasparetto, Adriele Giaretta Biase, Maria Victoria Ramos Ballester, Yhasmin Mendes de Moura, Sônia Maria de Stefano Piedade, Andrezza Karla de Oliveira Silva, Plínio Barbosa de Camargo. (2023). Evaluating the temporal patterns of land use and precipitation under desertification in the semi-arid region of Brazil. Ecological Informatics, 77, p.102192. https://doi.org/10.1016/j.ecoinf.2023.102192.
9. Richarde Marques da Silva, Celso Augusto Guimarães Santos, Jorge Flávio Cazé Braga da Costa Silva, Alexandro Medeiros Silva, Reginaldo Moura Brasil Neto. (2020). Spatial distribution and estimation of rainfall trends and erosivity in the Epitácio Pessoa reservoir catchment, Paraíba, Brazil. Natural Hazards, 102(3), p.829. https://doi.org/10.1007/s11069-020-03926-9.
10. Glauciene Justino Ferreira da Silva, Nádja Melo de Oliveira, Celso Augusto Guimarães Santos, Richarde Marques da Silva. (2020). Spatiotemporal variability of vegetation due to drought dynamics (2012–2017): a case study of the Upper Paraíba River basin, Brazil. Natural Hazards, 102(3), p.939. https://doi.org/10.1007/s11069-020-03940-x.
11. Li Cheng. (2021). The damage of water environment and the distribution change of biological community in Sanmenxia, Henan Province, under tourism development. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06972-0.
12. Theilon Henrique de Jesus Macêdo, Cristiano Tagliaferre, Bismarc Lopes da Silva, Alessandro de Paula, Odair Lacerda Lemos, Felizardo Adenilson Rocha, Rosilene Gomes de Souza Pinheiro, Ana Carolina Santos Lima. (2023). Assessment of Land Desertification in the Brazilian East Atlantic Region Using the Medalus Model and Google Earth Engine. Land, 13(1), p.31. https://doi.org/10.3390/land13010031.
13. Hanqing Hu, Jianhua Dai, Yuanyuan Jin, Xianyong Liu. (2021). Bibliometric analysis on desertification restoration based on CiteSpace. Arabian Journal of Geosciences, 14(2) https://doi.org/10.1007/s12517-020-06309-3.
14. P. Sandeep, K. C. Arun Kumar, S. Haritha. (2021). Risk modelling of soil erosion in semi-arid watershed of Tamil Nadu, India using RUSLE integrated with GIS and Remote Sensing. Environmental Earth Sciences, 80(16) https://doi.org/10.1007/s12665-021-09800-6.
15. Yan Yibo, Chai Ziyuan, Zibibula Simayi, Yan Haobo, Yang Xiaodong, Yang Shengtian. (2022). Dynamic evaluation and prediction of the ecological environment quality of the urban agglomeration on the northern slope of Tianshan Mountains. Environmental Science and Pollution Research, 30(10), p.25817. https://doi.org/10.1007/s11356-022-23794-z.
16. José Carlos Dantas, Richarde Marques da Silva, Celso Augusto Guimarães Santos. (2020). Drought impacts, social organization, and public policies in northeastern Brazil: a case study of the upper Paraíba River basin. Environmental Monitoring and Assessment, 192(5) https://doi.org/10.1007/s10661-020-8219-0.
17. Jorge Flávio Casé Braga da Costa Silva, Richarde Marques da Silva, Celso Augusto Guimarães Santos, Alexandro Medeiros Silva, Pedro Costa Guedes Vianna. (2021). Analysis of the response of the Epitácio Pessoa reservoir (Brazilian semiarid region) to potential future drought, water transfer and LULC scenarios. Natural Hazards, 108(1), p.1347. https://doi.org/10.1007/s11069-021-04736-3.
18. Elias Rodrigues da Cunha, Celso Augusto Guimarães Santos, Richarde Marques da Silva, Vitor Matheus Bacani, Paulo Eduardo Teodoro, Elói Panachuki, Naelmo de Souza Oliveira. (2020). Mapping LULC types in the Cerrado-Atlantic Forest ecotone region using a Landsat time series and object-based image approach: A case study of the Prata River Basin, Mato Grosso do Sul, Brazil. Environmental Monitoring and Assessment, 192(2) https://doi.org/10.1007/s10661-020-8093-9.
19. Leonardo Pereira e Silva, Ana Paula Campos Xavier, Richarde Marques da Silva, Celso Augusto Guimarães Santos. (2020). Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecology and Conservation, 21, p.e00811. https://doi.org/10.1016/j.gecco.2019.e00811.
20. Sarah Rahman, Swagata Ghosh. (2024). Climate, Environment and Agricultural Development. Advances in Geographical and Environmental Sciences. , p.203. https://doi.org/10.1007/978-981-97-8363-2_13.
21. Celso Augusto Guimarães Santos, Thiago Victor Medeiros do Nascimento, Richarde Marques da Silva. (2020). Analysis of forest cover changes and trends in the Brazilian semiarid region between 2000 and 2018. Environmental Earth Sciences, 79(18) https://doi.org/10.1007/s12665-020-09158-1.
22. Kelly Dayane Pereira da Silva, João Paulo de Oliveira Santos, Maria Cristina Santos Pereira, Célia Cristina Clemente Machado, Luciana Gomes Barbosa. (2022). Influence of land use and occupation on water quality and on the diatom community of reservoirs in northeast Brazil. Acta Biológica Colombiana, 27(2) https://doi.org/10.15446/abc.v27n2.89391.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2018 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.