Publicado
IW Sentinel-1 satellite scenes for the investigation of mine slope stability: experiences from the Riacho dos Machados gold mine (Brazil)
IW Sentinel-1 escenas por satélite para la investigación de la estabilidad de pendientes de minas: experiencias de la mina de oro Riacho dos Machados (Brasil)
DOI:
https://doi.org/10.15446/esrj.v25n1.86563Palabras clave:
radar remote sensing, open pit mine, PSI, surface displacements, geotechnical risks (en)Teledetección, mina a cielo abierto, desplazamientos de superficie, riesgos geotécnicos (es)
Descargas
In the last decade, the Persistent Scatterer Interferometry – PSI have been largely employed to predict instabilities and failure in open pit mines. The PSI is a powerful technique, which combines radar satellite data in order to detect and monitor tiny surface displacements over vast areas. In the last years, the Sentinel-1 radar mission have produced images of the globe acquired with different spatial and temporal resolutions that are now freely available. In recent years, the footwall slopes of the Riacho dos Machados Gold Mine – MRDM (Minas Gerais state, southeastern Brazil) have recorded large planar failures controlled by foliation planes. Therefore, the focus of this paper is to evaluate a stack of 39 Interferometric Wide Sentinel-1 scenes, spanning from January 2018 to April 2019, acquired in descending orbit geometry, for the detection and monitoring of surface displacements in the MRDM. The results have shown that descending IW Sentinel-1 scenes can be used to provide a broad picture of the Line-Of-Sight - LOS deformation phenomena. In order to monitor the evolution of the deformation phenomena induced by mining activities, LOS deformation maps with millimeter accuracy could be only delivered at least each 12 days.
Referencias
Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., & Laczniak, R. J. (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology, 27(6), 483-486.
Alkmim, F. F., Marshak, S., Pedrosa-Soares, A. C., Peres, G. G., Cruz, S. C. P., & Whittington, A. (2006). Kinematic evolution of the Araçuaí-West Congo Orogen in and Africa: nutcracker during the Neoproterozoic assembly of Gondwana. Precambrian Research, 149, 43-64.
Bamler, R., & Hartl, P. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14, R1-R54.
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE TGRS, 40(11), 2375–2383.
Bieniawski, Z.T. (1989). Engineering rock mass classification. John Wiley and Sons, New York, 251 pp.
Carnec, C., Massonnet, D., & King, C. (1996). Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophysical Research Letters, 23 (24), 3579-3582.
Colesanti, C., Ferretti, A., Prati, C., & Rocca, F. (2001). Comparing GPS, optical leveling and permanent scatterers. IGARSS, Sydney, Australia. Proceedings… Sydney: IEEE, 2001, v.6., p. 2622-2624.
Colesanti, C., Ferretti, A., Prati, C., & Rocca, F. (2003). Monitoring landslides and tectonic motion with the Permanent Scatterers technique. Engineering Geology, 68, 3-14.
Colesanti, C., & Wasowski, J. (2006). Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering geology, 88, 173-199.
Crocco, F. A., Abreu, F. R., Teixeira, N., Cançado, F. L. L., Maciel, J. D., Sena, F., & Ramos, M. M. (2006). Mineralizações de zinco e chumbo do Depósito Salobro, Porteirinha (MG). Geociências, 25(3), 359-378.
Crocco-Rodrigues, F. A., Guimarães, M. L. V., Abreu, F. R., Belo de Oliveira, O. A. & Greco, F. M. (1993). Evolução Tectônica do Bloco Itacambira - Monte Azul entre Barrocão e Porteirinha, MG. Soc. Bras. Geol., Núcleo MG, Bol. 12, (IV Simp. Nac. Est. Tecton. SNET, Belo Horizonte). 212-216 p.
Crossetto, M., Monserrat, O., Cuevas-Gonzáles, M., Devanthéry, N., & Crippa, B. (2016). Persistent Scatterer Interferometry: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 78-89.
Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in Differential SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202–2212.
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent Scatterers in SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-19.
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., & Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE TGRS, 49(9), 3460–3470.
Fonseca, E. (1993). Depósito aurífero de Riacho dos Machados, norte de Minas Gerais: hidrotermalismo, deformação e mineralização associada. Master thesis, Geoscience Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.
Fonseca, E., Lobato, L. M., & Baars, F. J. (1997). The petrochemistry of the auriferous, volcano sedimentary Riacho dos Machados Group, Central-Eastern Brazil: geotectonic implications for shear-hosted gold mineralization. Journal of South American Earth Sciences, 10(5-6), 423-443.
Fuhrmann, T., & Garthwaite, M. C. (2019). Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion. Remote Sensing, 11(3), 1-21.
Funning, G., & Garcia, A. (2019). A systematic study of earthquake detectability using Sentinel-1 Interferometric Wide-Swath data. Geophysical Journal International, 216(1), 332–349. https://doi.org/10.1093/gji/ggy426
Galloway, D. L., & Hoffmann, J. (2007). The application of satellite differential SAR interferometry‐derived ground displacements in hydrogeology. Hydrogeology Journal, 15(1), 133–154.
GEOESTÁVEL (2015). Estudos talude de cava final e recuperação talude de footwall – Mineração Riacho dos Machados (N° GSTCPT0001-01-1-GT-RET-0001_1). Internal Report Carpathian Gold inc.
Guimarães, M. L. V., Grossi-Sad, J. H. & Fonseca, E. da (1997). Geologia da Folha Francisco Sá. In: Grossi-Sad, J. H., Lobato, L. M., Pedrosa-Soares, A. C. & Soares Filho, B. S. (Editors). PROJETO ESPINHAÇO EM CD-ROM (textos, mapas e anexos). Belo Horizonte, COMIG - Companhia Mineradora de Minas Gerais. 223-313 pp.
Guimarães, M. L. V., Crocco-Rodrigues, F. A., Abreu, F. R., Belo de Oliveira, O. A., & Greco, F. M. (1993). Geologia do Bloco Itacambira-Monte Azul entre Barrocão e Porteirinha (MG). In: Simpósio Nacional De Estudos Tectônicos, 4, Belo Horizonte. Resumos... Belo Horizonte, Sociedade Brasileira de Geologia. 74-78 pp.
Hartwig, M., Paradella, W., & Mura, J. (2013). Detection and Monitoring of Surface Motions in Active Open Pit Iron Mine in the Amazon Region, Using Persistent Scatterer Interferometry with TerraSAR-X Satellite Data. Remote Sensing, 5, 4719-4734.
Hartwig, M. E. (2016). Detection of mine slope motions in Brazil as revealed by satellite radar interferograms. Bulletin of Engineering Geology and the Environment, 75, 605-621.
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31 (L23611).
Intrieri, E., Raspini, F., & Fumagalli, A. (2018). The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides, 15, 123-133. https://doi.org/10.1007/s10346-017-0915-7.
Madsen, S. N., & Zebker, H. A. (1998). Imaging radar interferometry. In: Henderson, F. M., Lewis, A. J. (Editors) Principles & Applications of Imaging Radar – Manual of Remote Sensing, Third Edition, v. 2, John Wiley & Sons, Inc., Danvers, MA, 359-380.
Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36(4), 441-500.
Nagler, T., Rott, H., Hetzenecker, M., & Potin, W.P. (2015). The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations. Remote Sensing, 7(7), 9371-9389.
Paradella, W. R., Ferretti, A., Mura, J. C., Colombo, D., Gama, F. F., Tamburini, A., Santos, A. R., Novali, F., Galo, M., Camargo, P. O., Silva, A. Q., Silva, G. G., Silva, A., & Gomes, L. L. (2015). Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Engineering Geology, 193, 61-78.
Pedrosa-Soares, A. C., Wiedmann-Leonardos, C. M. (2000). Evolution of the Araçuaí Belt and its connection to the Ribeira Belt, Eastern Brazil. In: Cordani et al. (Editors). Tectonic Evolution of South America, Rio de Janeiro, SBG, 265-285 pp.
Pepe, A., & Calò, F. (2017). A review of interferometric synthetic aperture radar (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements. Applied Sciences, 7(1264), 1-39.
Perissin, D., & Wang, T. (2012). Repeat-pass SAR interferometry with partially coherent targets. IEEE TGRS, 50(1), 271–280.
Peterle, D. T., Hartwig, M. E., & Lima, L. R. (2019). Slope stability assessment by using the finite element method: the case study of the Riacho dos Machados Gold Mine, Minas Gerais State, Southern Brazil. In: Fontoura, S. A. B., Rocca, R. J., Mendoza, J. F. P. (Editors). Annals of the 14th International Congress on Rock Mechanics and Rock Engineering, Foz do Iguaçu, Brazil, 13-18 September, 3621-3627.
Pinto, C. A., Paradella, W. R., Mura, J. C., Gama, F. F., Santos, A. R., Silva, G. G., & Hartwig, M. E. (2015). Applying persistent scatterer interferometry for surface displacement mapping in the Azul open pit manganese mine (Amazon region) with TerraSAR-X StripMap data. Journal of Applied Remote Sensing, 9(1) 095978 (22 December 2015).
Read, J., & Stacey, P. (2009). Guidelines for open pit slope design. CRC, Leiden, 496 pp.
RPA Inc. (2018). Technical report on the Riacho dos Machados Gold Mine, Minas Gerais, Brazil (NI 43-101 Report). Internal Report Brio Gold Inc.
Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodrígues, E., & Goldstein, R. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333-382.
Sabater, J. R., Duro, J., Arnaud, A., Albiol, D., & Koudogbo, F. N. (2011). Comparative analyses of multi-frequency PSI ground deformation measurements. Proceedings of the International Society for Optical Engineering – SPIE, Prague, Czech Republic., vol. 8179. p. 81790M - 81790-12M.
Sjöberg, J. (1996). Large scale slope stability in open pit mining – a review. Sweden: Lulea University of Technology - Division of Rock Mechanics. 215p. Technical Report.
Sowter, A., Amat, M. B. C., Cigna, F., Marsh, S., Athab, A. & Alshammari, L. (2016). Mexico City land subsidence in 2014 – 2015 with Sentinel-1 IW TOPS: results using the Intermittent SBAS (ISBAS) technique. International Journal of Applied Earth Observation and Geoinformation, 52, 230-242.
Strozzi, T., Wegmüller, U., Tosi, L., Bitelli, G., & Spreckels, V. (2001). Land subsidence monitoring with differential SAR interferometry. Photogrammetric Engineering & Remote Sensing, 67(11), 1261-1270.
Schuite, J., Longuevergne, L., Bour, O., Boudin, F., Durand, S., & Lavenant, N. (2015). Inferring field‐scale properties of a fractured aquifer from ground surface deformation during a well test. Geophysical Research Letters, 42(24), 10,696-10,703.
Vaziri, A., Moore, L., & Ali, H. (2010). Monitoring systems for warning impending failures in slopes and open pit mines. Natural Hazards, 55, 501-512.
VOG. (2017). Estudos conceituais análise geotécnica para o push back – cava sul (Vog n° VG16-193-1-GL-RTE-0001). Internal Report Brio Gold Inc. 28p.
Wasowski, J., & Bovenga, F. (2014). Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology, 174, 103-138.
Werner, C., Wegmuller, U., Strozzi, T., & Wiesmann, A. (2003). Interferometric point target analysis for deformation mapping, IGARSS’03, Toulouse, France., 21-25 July, v. 7. p. 4362-4364.
Zavodni, Z. M. (2000). Time-dependent movements of open-pit slopes. In: Hustrulid et al. (Editors). Slope stability in surface mining. Society for Mining, Metallurgy and Exploration, Inc. (SME), Littleton, 81-87 pp.
Zebker, H., Rosen, P., & Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research, 102 (4), 7547-7563.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Joaquin Escayo, Ignacio Marzan, David Martí, Fernando Tornos, Angelo Farci, Martin Schimmel, Ramon Carbonell, José Fernández. (2022). Radar Interferometry as a Monitoring Tool for an Active Mining Area Using Sentinel-1 C-Band Data, Case Study of Riotinto Mine. Remote Sensing, 14(13), p.3061. https://doi.org/10.3390/rs14133061.
2. Ajay Kumar Taloor, Girish Ch. Kothyari, Rakesh K. Dumka, Akhtar Alam, Kapil Malik. (2023). Crustal deformation study of Kashmir basin: Insights from PSInSAR based time series analysis. Journal of Applied Geophysics, 211, p.104979. https://doi.org/10.1016/j.jappgeo.2023.104979.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2021 Earth Sciences Research Journal
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Earth Sciences Research Journal posee una licencia Creative Commons Attribution.
Usted es libre de: Compartir: copie y redistribuya el material en cualquier medio o formato. Adaptar: remezclar, transformar y ampliar el material para cualquier propósito, incluso comercialmente. El licenciante no puede revocar estas libertades mientras siga los términos de la licencia.