Publicado

2020-04-01

Change Pattern and Driving Mechanism of Construction Land in China’s Undertaking Industrial Transfer Demonstration Area: Taking the Wanjiang City Belt along the Yangtze River as an Example

Patrón de cambio y mecanismo de conducción de terrenos de construcción en el área de demostración de empresas de transferencia industrial chinas

DOI:

https://doi.org/10.15446/esrj.v24n2.87710

Palabras clave:

expansion intensity, land use, hotspot analysis, the Wanjiang City Belt along the Yangtze River (en)
intensidad de expansión, uso del suelo, análisis de puntos críticos, el cinturón de la ciudad de Wanjiang a lo largo del río Yangtze (es)

Descargas

Autores/as

  • Yuhong Cao School of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
  • Meiyun Liu School of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
  • Yuandan Cao School of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
  • Chen Chen School of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
  • Dapeng Zhang School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China

The construction land includes the urban land, rural residential areas and other construction land. The Wanjiang City Belt along the Yangtze River is an important demonstration area for undertaking industrial transfer in China. With the accumulation of factors relative to economic development, the construction land has increased sharply, and the regional ecological security pattern is facing new challenges. After collecting the image interpretation data of multi-period land use of the Wanjiang City Belt, the work studied the characteristics of construction land change pattern since 1995 and its driving mechanism based on the GIS platform, land use transfer matrix, expansion intensity index, hotspot analysis and mathematical statistics. The results showed that: (1) From 1995 to 2015, the urban land and other construction land in the Wanjiang City Belt have increased, but the rural residential areas decreased in 2010-2015. The three types of land had the largest changes in 2005-2010 and the change in the other construction land was particularly prominent. (2) The hotspots for construction land expansion are mainly in urban areas with rapid economic development such as Hefei, Wuhu, Ma’anshan and Tongling, where the land use changes most severely. (3) The driving factors for the change of construction land area include natural and social factors. Among social and economic factors, the GDP, industrial added value, secondary output value and urbanization rate are the main driving forces for changes. In the past 20 years, the construction of China’s Undertaking Industrial Transfer Demonstration Area has changed the land optimal allocation and intensive use mode in the region, providing the basis for resource development and utilization, economic development and industrial structure adjustment.

El terreno de construcción incluye el terreno urbano, las áreas residenciales rurales y otros terrenos de construcción. El cinturón de la ciudad de Wanjiang a lo largo del río Yangtze es un área de demostración importante para llevar a cabo la transferencia industrial en China. Con la acumulación de factores relacionados con el desarrollo económico, el terreno de construcción ha aumentado considerablemente y el patrón de seguridad ecológica regional enfrenta nuevos desafíos. Después de recopilar los datos de interpretación de imágenes del uso de la tierra por períodos múltiples del Cinturón de la ciudad de Wanjiang, el trabajo estudió las características del patrón de cambio de tierra de construcción desde 1995 y su mecanismo de conducción basado en la plataforma SIG, matriz de transferencia de uso de la tierra, índice de intensidad de expansión, análisis de puntos críticos y estadísticas matemáticas. Los resultados mostraron que: (1) De 1995 a 2015, el suelo urbano y otros terrenos de construcción en el cinturón de la ciudad de Wanjiang han aumentado, pero las áreas residenciales rurales disminuyeron en 2010-2015. Los tres tipos de tierra tuvieron los mayores cambios en 2005-2010 y el cambio en la otra tierra de construcción fue particularmente prominente. (2) Los puntos críticos para la expansión de la tierra de construcción se encuentran principalmente en áreas urbanas con un rápido desarrollo económico como Hefei, Wuhu, Ma’anshan y Tongling, donde el uso de la tierra cambia más severamente. (3) Los factores que impulsan el cambio del área de tierra de construcción incluyen factores naturales y sociales. Entre los factores sociales y económicos, el PIB, el valor agregado industrial, el valor secundario de producción y la tasa de urbanización son las principales fuerzas impulsoras de los cambios. En los últimos 20 años, la construcción del Área de Demostración de Empresas de Transferencia Industrial chinas ha cambiado la distribución óptima de la tierra y el modo de uso intensivo en la región, proporcionando la base para el desarrollo y la utilización de recursos, el desarrollo económico y el ajuste de la estructura industrial.

Referencias

Arlinghaus, S. L. (1985). Fractals Take a Central Place. Geografiska Annaler. Series B, Human Geography, 67(2), 83-88.

Baruah, D., & Pathak, K. (2011). Brownfield Redevelopment of Coal Mine Areas: A Study for an Alternate Land Use Solution. Journal of Mines, Metals and Fuels, 59(9), 280-293.

Batty, M., & Xie, Y. (1994). From Cells to Cities. Environment & Planning B: Planning & Design, 21(7), 31-31.

Boyce, R. R., & Clark, W. A. V. (1964). The Concept of Shape in Geography. Geographical Review, 54(4), 561-572.

Chen, J. L., Gao, J. L., Xu, M. Y., & Chen, W. (2014). Characteristics and mechanism of construction land expansion in Nanjing metropolitan area. Geographical Research, 34(8), 946-954.

Chen, W., & Wu, Q. (2014). Economic Efficiency of Urban Construction Land and Its Influential Factors in Yangtze River Delta. Economic Geography, 34(9), 142-149.

Chi, B., & Hu, S. G. (2011). Study on Prediction of Land Use Change in Chongqing Based on Markov Model. Journal of Anhui Agricultural Sciences, 39(26), 16206-16207.

Forman, R. T. (1995). Land mosaics: the ecology of landscapes and regions. Cambridge University Press.

Frankhauser, P. (1990). Aspects fractals des structures urbaines. L’espace Géographique, 19(1), 45-69.

Hao, S., & Chunjing, L. (2013). Analysis of LUCC in Loess Plateau Based on PSR Model-A Case Study in Shanghuang Study Area in Guyuan City. BioTechnology: An Indian Journal, 8(7), 1009-1014.

Jiang, H. B., Shi, P. J., Li, Q. G., & Chen, Y. F. (2017). Integral urban spatial forecast of Jiuquan City and Jiayuguan City based on SLEUTH model. Journal of Arid Land Resources and Environment, 1, 25-31.

Lee, D. R., & Sallee, G. T. (1970). A Method of Measuring Shape. Geographical Review, 60(4), 555-563.

Li, X. Y., Li, H. Y., Man, W. D., Mao, D. H., & Wang, Z. M. (2018). Process and Driving Factors of Urban Land Expansion in Harbin-Changchun City Cluster. Scientia Geographica Sinica, 38(8), 1273-1282.

Liu, J. Y., Liu, W. C., Kuang, W. H., & Ning, J. (2016). Examining the influence of the implementation of Major Function-oriented Zones on built-up area expansion in China. Acta Geographica Sinica, 71(3), 355-369.

Liu, Z., Huang, H., Wernersm S. E., & Yan, D. (2016). Construction area expansion in relation to economic-demographic development and land resource in the Pearl River Delta of China. Journal of Geographical Sciences, 26(2), 188-202.

Lv, W. G., & Chen, W. (2009). Manufacturing Industry Enterprises Location Choice and the Urban Spatial Restructuring in Nanjing. Acta Geographica Sinica, 64(2), 142-152.

Qu, A. X., & Qiu, F. D. (2013). The Process and Pattern of Urban Construction Land Expansion in Xuzhou. Scientia Geographica Sinica, 33(1), 61-68.

Qu, Y. H., Sun, S., & Chen, Y. R. (2014). The Expansion and Strategy of Controlling China’s Urban Construction Land. Resources Science, 36(1), 1-7.

Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109(40), 16083-16088.

Sharifi, M. A., & Van Keulen, H. A. (1994). Decision support system for land use planning at farm enterprise level. Agricultural-System, 45(3), 239-257.

Ventura, S. J., Niemann, B. J., & Moyer, D. D. (1988). Multipurpose Land Information System for Rural Resource Planning. Journal of Soil and Water Conservation, 43(3), 226-229.

Wang, L. (2013). Thermal environment effect of land use change based on remote sensing and geographical information system. Information Technology Journal, 12(22), 6812-6816.

Xu, L., Zhou, Y., & Xu, B. S. (2012). Evaluation of Spatial Control Division of Construction Lands Based on Land Eco-environmental Quality. Bulletin of Soil and Water Conservation, 32(1), 222-226.

Xuan, Z., Aspinall, R. J., & Healey, R. G. (1996). LUDDS: a knowledge-based spatial decision support system for strategic land-use planning. Computers-and Electronics-in-Agriculture, 15(4), 279-301.

Yao, Y., Li, J. F., & Yang, Y. Y. (2018). Study on Social Economic Function Transformation and Coordination Evaluation of Urban Construction Land Use in Middle Reaches of Yangtze River. Areal Research and Development, 37(5), 128-133.

Ye, Y. Y., Zhang, H. O., Liu, K., & Wu, Q. T. (2013). Research on The Influence of Site Factors on the Expansion of Construction Land in the Pearl River Delta, China: By Using GIS and Remote Sensing. International Journal of Applied Earth Observation & Geoinformation, 21(4), 366-373.

Cómo citar

APA

Cao, Y., Liu, M., Cao, Y., Chen, C. y Zhang, D. (2020). Change Pattern and Driving Mechanism of Construction Land in China’s Undertaking Industrial Transfer Demonstration Area: Taking the Wanjiang City Belt along the Yangtze River as an Example. Earth Sciences Research Journal, 24(2), 215–223. https://doi.org/10.15446/esrj.v24n2.87710

ACM

[1]
Cao, Y., Liu, M., Cao, Y., Chen, C. y Zhang, D. 2020. Change Pattern and Driving Mechanism of Construction Land in China’s Undertaking Industrial Transfer Demonstration Area: Taking the Wanjiang City Belt along the Yangtze River as an Example. Earth Sciences Research Journal. 24, 2 (abr. 2020), 215–223. DOI:https://doi.org/10.15446/esrj.v24n2.87710.

ACS

(1)
Cao, Y.; Liu, M.; Cao, Y.; Chen, C.; Zhang, D. Change Pattern and Driving Mechanism of Construction Land in China’s Undertaking Industrial Transfer Demonstration Area: Taking the Wanjiang City Belt along the Yangtze River as an Example. Earth sci. res. j. 2020, 24, 215-223.

ABNT

CAO, Y.; LIU, M.; CAO, Y.; CHEN, C.; ZHANG, D. Change Pattern and Driving Mechanism of Construction Land in China’s Undertaking Industrial Transfer Demonstration Area: Taking the Wanjiang City Belt along the Yangtze River as an Example. Earth Sciences Research Journal, [S. l.], v. 24, n. 2, p. 215–223, 2020. DOI: 10.15446/esrj.v24n2.87710. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/87710. Acesso em: 15 jul. 2024.

Chicago

Cao, Yuhong, Meiyun Liu, Yuandan Cao, Chen Chen, y Dapeng Zhang. 2020. «Change Pattern and Driving Mechanism of Construction Land in China’s Undertaking Industrial Transfer Demonstration Area: Taking the Wanjiang City Belt along the Yangtze River as an Example». Earth Sciences Research Journal 24 (2):215-23. https://doi.org/10.15446/esrj.v24n2.87710.

Harvard

Cao, Y., Liu, M., Cao, Y., Chen, C. y Zhang, D. (2020) «Change Pattern and Driving Mechanism of Construction Land in China’s Undertaking Industrial Transfer Demonstration Area: Taking the Wanjiang City Belt along the Yangtze River as an Example», Earth Sciences Research Journal, 24(2), pp. 215–223. doi: 10.15446/esrj.v24n2.87710.

IEEE

[1]
Y. Cao, M. Liu, Y. Cao, C. Chen, y D. Zhang, «Change Pattern and Driving Mechanism of Construction Land in China’s Undertaking Industrial Transfer Demonstration Area: Taking the Wanjiang City Belt along the Yangtze River as an Example», Earth sci. res. j., vol. 24, n.º 2, pp. 215–223, abr. 2020.

MLA

Cao, Y., M. Liu, Y. Cao, C. Chen, y D. Zhang. «Change Pattern and Driving Mechanism of Construction Land in China’s Undertaking Industrial Transfer Demonstration Area: Taking the Wanjiang City Belt along the Yangtze River as an Example». Earth Sciences Research Journal, vol. 24, n.º 2, abril de 2020, pp. 215-23, doi:10.15446/esrj.v24n2.87710.

Turabian

Cao, Yuhong, Meiyun Liu, Yuandan Cao, Chen Chen, y Dapeng Zhang. «Change Pattern and Driving Mechanism of Construction Land in China’s Undertaking Industrial Transfer Demonstration Area: Taking the Wanjiang City Belt along the Yangtze River as an Example». Earth Sciences Research Journal 24, no. 2 (abril 1, 2020): 215–223. Accedido julio 15, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/87710.

Vancouver

1.
Cao Y, Liu M, Cao Y, Chen C, Zhang D. Change Pattern and Driving Mechanism of Construction Land in China’s Undertaking Industrial Transfer Demonstration Area: Taking the Wanjiang City Belt along the Yangtze River as an Example. Earth sci. res. j. [Internet]. 1 de abril de 2020 [citado 15 de julio de 2024];24(2):215-23. Disponible en: https://revistas.unal.edu.co/index.php/esrj/article/view/87710

Descargar cita

CrossRef Cited-by

CrossRef citations12

1. Marlen Isabel Redondo Ramírez, Carlos Andrés Díaz Restrepo, Gerardo Antonio Buchelli Lozano. (2021). Índices de producción para el sector metalmecánica en Colombia. Revista Venezolana de Gerencia, 26(96), p.1364. https://doi.org/10.52080/rvgluz.26.96.23.

2. Biao Zhang, Dian Shao, Zhonghu Zhang. (2022). Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China. Sustainability, 14(10), p.6204. https://doi.org/10.3390/su14106204.

3. Yinbing Zhao, Zhongyun Ni, Yang Zhang, Peng Wan, Chuntao Geng, Wenhuan Yu, Yongjun Li, Zhenrui Long. (2024). Exploring the Spatiotemporal Evolution Patterns and Determinants of Construction Land in Mianning County on the Eastern Edge of the Qinghai–Tibet Plateau. Land, 13(7), p.993. https://doi.org/10.3390/land13070993.

4. Lin Qi, Yulong Pei, Jun Dong. (2021). Evaluation and forecast method of coordination degree between urban traffic planning and land use. Arabian Journal of Geosciences, 14(13) https://doi.org/10.1007/s12517-021-07588-0.

5. Hua Deng, Denise-Penelope Kontoni. (2022). Application of BIM Technology in the Seismic Performance of “Wood Weaving” Structure of Wooden Arcade Bridges. Shock and Vibration, 2022, p.1. https://doi.org/10.1155/2022/8033059.

6. Wenxing Du, Xiaofeng Zhao, Zhizhong Zhao, Chuanzhao Chen, Dingyi Qian. (2022). Assessment and dynamic mechanisms of the land-use dominant morphology transition: a case study of Hainan Province, China. Environmental Monitoring and Assessment, 194(6) https://doi.org/10.1007/s10661-022-09988-5.

7. Binglu Wu, Di Mu, Yi Luo, Zhengguang Xiao, Jilong Zhao, Dongxu Cui. (2022). Rural Ecological Problems in China from 2013 to 2022: A Review of Research Hotspots, Geographical Distribution, and Countermeasures. Land, 11(8), p.1326. https://doi.org/10.3390/land11081326.

8. Dong Ouyang, Xigang Zhu, Xingguang Liu, Renfei He, Qian Wan. (2021). Spatial Differentiation and Driving Factor Analysis of Urban Construction Land Change in County-Level City of Guangxi, China. Land, 10(7), p.691. https://doi.org/10.3390/land10070691.

9. Xiao Yi, Yin Ke, Mohammad Farukh Hashmi. (2022). Research Rural Ecological Stress Based on Farmers’ Livelihood Strategy in Three Gorges Reservoir Area. Wireless Communications and Mobile Computing, 2022, p.1. https://doi.org/10.1155/2022/5261762.

10. Xijia Fan. (2021). The evolution of urban image environment innovation ability—based on the perspective of marine animal and plant protection. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06966-y.

11. Ji Cao, Weidong Cao, Xianwei Fang, Jinji Ma, Diana Mok, Yisong Xie. (2022). The Identification and Driving Factor Analysis of Ecological-Economi Spatial Conflict in Nanjing Metropolitan Area Based on Remote Sensing Data. Remote Sensing, 14(22), p.5864. https://doi.org/10.3390/rs14225864.

12. Shengwei Wang, Hongquan Chen, Yu lin Guo, Wenjing Su, Yurong Xu, Shuohao Cui, Zhiqiang Zhou. (2024). Interpretation of spatial and temporal changes and drivers of ecological source regions based on LightGBM-SHAP. AIP Advances, 14(6) https://doi.org/10.1063/5.0213347.

Dimensions

PlumX

Visitas a la página del resumen del artículo

959

Descargas

Los datos de descargas todavía no están disponibles.