Publicado

2020-04-01

Remote Monitoring System of Geological Exploration in Lava Area Based on GPS

Sistema de monitoreo remoto de exploración geológica en el área de lava basado en GPS

DOI:

https://doi.org/10.15446/esrj.v24n2.87956

Palabras clave:

GPS, Lava area, Geology, Exploration, Remote, Monitoring (en)
GPS, Área de lava, Geología, Exploración, Remoto, Supervisión (es)

Descargas

Autores/as

  • Aimei Xu School of Civil Engineering and Architecture, Xinyu University, Xinyu 338000, China

A remote monitoring system for geological exploration in a lava area based on GPS is designed. The system mainly collects geological exploration data in a lava area by means of multi-S integration through the data acquisition module of geological exploration in a lava area. Then the data collected are transmitted to the data analysis and management module of geological exploration data in a lava area by using a GPS network, and the data analysis and management module of geological exploration data in the lava area is exploited. The monitoring data processing method based on the unascertained filtering method is used to remove gross errors in geological exploration data of lava area, identify abnormal values in geological exploration data of lava area, and transmit the abnormal values to the GPS-based geological anomaly location module. The GPS-based geological anomaly location module locates the geological anomaly according to the abnormal values, thus completing the remote monitoring of the exploration of the lava area based on GPS. The test results show that when the system is applied to remote monitoring of geological exploration in a lava area, the positioning error of small soil caves is small, and the reliability of monitoring data is high, which meets the needs of remote monitoring of geological exploration in a lava area.

Se diseña un sistema de monitoreo remoto para exploración geológica en el área de lava basado en GPS. El sistema recopila principalmente datos de exploración geológica en el área de lava mediante la integración multi-S a través del módulo de adquisición de datos de exploración geológica en el área de lava. Luego, los datos recopilados se transmiten al módulo de análisis y gestión de datos de exploración geológica en el área de lava utilizando una red GPS, y se explota el módulo de análisis y gestión de datos de exploración geológica en el área de lava. El método de procesamiento de datos de monitoreo basado en un método de filtrado no determinado se usa para eliminar errores graves en los datos de exploración geológica del área de lava, identificar valores anormales en los datos de exploración geológica del área de lava y transmitir los valores anormales al módulo de ubicación de anomalías geológicas basado en GPS. El módulo de localización de anomalías geológicas basado en GPS ubica la anomalía geológica de acuerdo con los valores anormales, completando así el monitoreo remoto de la exploración del área de lava basada en GPS. Los resultados de la prueba muestran que cuando el sistema se aplica al monitoreo remoto de la exploración geológica en un área de lava, el error de posicionamiento de las pequeñas cuevas del suelo es pequeño y la confiabilidad de los datos de monitoreo es alta, lo que satisface las necesidades del monitoreo remoto de la exploración geológica en una zona de lava.

Referencias

Alison, D. O., Costa, E., & Abdu, M. A. (2017). The variability of low-latitude ionospheric amplitude and phase scintillation detected by a triple-frequency GPS receiver. Radio Science, 52, 439-460.

Amiri-Simkooei, A. R., Mohammadloo, T. H., & Argus, D. F. (2017). Multivariate analysis of GPS position time series of JPL second reprocessing campaign. Journal of Geodesy, 91, 1-20.

Gao, Y., Jin, B., & Zhang, H. (2013). Wireless remote monitoring system for the AGC svibration fault of rolling mill. Journal of Applied Sciences, 13(21), 4875-4880.

Geng, J., Jiang, P., & Liu, J. (2017). Integrating GPS with GLONASS for high-rate seismogeodesy. Geophysical Research Letters, 44, 3139-3146.

Gu, Y., Yuan, L., & Fan, D. (2017). Seasonal crustal vertical deformation induced by environmental mass loading in mainland China derived from GPS, GRACE and surface loading models. Advances in Space Research, 59(1), 88-102.

He, Z. Y., & Yan, J. (2017). NLOS mobile node localization algorithm based on error prior knowledge. Journal of Jilin University (Science Edition), 55, 1221-1226.

Hendrikx, W., & Gestel, N. V. (2017). The emergence of hybrid professional roles: GPs and secondary school teachers in a context of public sector reform. Public Management Review, 19, 1105-1123.

Hu, J., Li, Z. W., & Ding, X. L. (2017). Derivation of 3-D coseismic surface displacement fields for the 2011 Mw9.0 Tohoku-Oki earthquake from InSAR and GPS measurements. Geophysical Journal International, 192, 573-585.

Jian, Y., Sun, F., & Wang, P. (2017). Vesicle distribution in acidic lava flow units in the rift basins of NE China: implications for petroleum reservoir exploration. Geological Journal, 52, 609-623.

Khan, M., Yuksel, M., & Winkelmaier, G. (2017). GPS-free maintenance of a Free-Space-Optical Link between two autonomous mobiles. IEEE Transactions on Mobile Computing, 16, 1644-1657.

Kostopoulou, O., Porat, T., & Corrigan, D. (2017). Diagnostic accuracy of GPs when using an early-intervention decision support system: a high-fidelity simulation. British Journal of General Practice, 67, e201-e208.

Kugler, L. (2017). Why GPS spoofing is a threat to companies, countries. Communications of the Acm, 60, 18-19.

Li, Y., Ye, Y., & Xiao, L. (2017). Classifying community space at a historic site through cognitive mapping and GPS tracking: The case of Gulangyu, China. Urban Design International, 22, 127-149.

Liu, Q. F. (2017). Initial rotor position estimation method for interior permanent magnet synchronous motor. Journal of Power Supply, 15,132-137.

Liu, X., Chow, J. Y., & Li, S. (2018). Online monitoring of local taxi travel momentum and congestion effects using projections of taxi GPS-based vector fields. Journal of Geographical Systems, 20, 253-274.

Liu, Y., Ye, S., & Song, W. (2017). Rapid PPP ambiguity resolution using GPS+GLONASS observations. Journal of Geodesy, 91, 441-455.

Liu, Z., Meng, X., Tang, Y., Gao, F., & Wang, Y. (2014). Research of remote monitoring system in Hemophilia information management. BioTechnology: An Indian Journal, 10(11), 5490-5494.

Masiokas, M. H., Delgado, S., & Pitte, P. (2017). Inventory and recent changes of small glaciers on the northeast margin of the Southern Patagonia Icefield, Argentina. Journal of Glaciology, 61, 511-523.

Riordan, D. O., Byrne, S., & Fleming, A. (2017). GPS’ perspectives on prescribing for older people in primary care: a qualitative study. British Journal of Clinical Pharmacology, 83, 1521-1531.

Song, T., Capurso, N., & Cheng, X. (2017). Enhancing GPS with lane-level navigation to facilitate highway driving. IEEE Transactions on Vehicular Technology, 66, 4579-4591.

Wang, Q., Zhang, Y. C., & Ban, Y. M. (2018). Research of distribution power supply fault location system based on Android. Chinese Journal of Power Sources, 42, 130-131.

Wang, Y. Y., Lin, H. H., & Wang, Y. S. (2017). What drives users’ intentions to purchase a GPS navigation app: The moderating role of perceived availability of a free substitute. Internet Research, 28, 00-00.

Wu, P., Steffen, H., & Wang, H. (2018). Optimal locations for GPS measurements in North America and northern Europe for constraining Glacial Isostatic Adjustment. Geophysical Journal International, 181, 653-664.

Yu, D., & Lu, H. (2017). The interactions between online shopping and personal activity travel behavior: an analysis with a GPS-based activity travel diary. Transportation, 44, 1-14.

Zhao, H. Y., He, J. W., & Wa, W. H. (2017). The Single Station Geometric Positioning Technology of Airborne Infrared System for Sea Surface Targets. Journal of China Academy of Electronics and Information Technology, 12, 410-413.

Zhao. Y. R., & Miao, W. L. (2018). A mine personnel location system based on RFID Technology. Automation & Instrumentation, 1, 191-194.

Zhu, X. Y. (2018). Simulation of target location signal detection in satellite gps geological exploration. Computer Simulation, 35, 445-448.

Cómo citar

APA

Xu, A. (2020). Remote Monitoring System of Geological Exploration in Lava Area Based on GPS. Earth Sciences Research Journal, 24(2), 207–214. https://doi.org/10.15446/esrj.v24n2.87956

ACM

[1]
Xu, A. 2020. Remote Monitoring System of Geological Exploration in Lava Area Based on GPS. Earth Sciences Research Journal. 24, 2 (abr. 2020), 207–214. DOI:https://doi.org/10.15446/esrj.v24n2.87956.

ACS

(1)
Xu, A. Remote Monitoring System of Geological Exploration in Lava Area Based on GPS. Earth sci. res. j. 2020, 24, 207-214.

ABNT

XU, A. Remote Monitoring System of Geological Exploration in Lava Area Based on GPS. Earth Sciences Research Journal, [S. l.], v. 24, n. 2, p. 207–214, 2020. DOI: 10.15446/esrj.v24n2.87956. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/87956. Acesso em: 15 jul. 2024.

Chicago

Xu, Aimei. 2020. «Remote Monitoring System of Geological Exploration in Lava Area Based on GPS». Earth Sciences Research Journal 24 (2):207-14. https://doi.org/10.15446/esrj.v24n2.87956.

Harvard

Xu, A. (2020) «Remote Monitoring System of Geological Exploration in Lava Area Based on GPS», Earth Sciences Research Journal, 24(2), pp. 207–214. doi: 10.15446/esrj.v24n2.87956.

IEEE

[1]
A. Xu, «Remote Monitoring System of Geological Exploration in Lava Area Based on GPS», Earth sci. res. j., vol. 24, n.º 2, pp. 207–214, abr. 2020.

MLA

Xu, A. «Remote Monitoring System of Geological Exploration in Lava Area Based on GPS». Earth Sciences Research Journal, vol. 24, n.º 2, abril de 2020, pp. 207-14, doi:10.15446/esrj.v24n2.87956.

Turabian

Xu, Aimei. «Remote Monitoring System of Geological Exploration in Lava Area Based on GPS». Earth Sciences Research Journal 24, no. 2 (abril 1, 2020): 207–214. Accedido julio 15, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/87956.

Vancouver

1.
Xu A. Remote Monitoring System of Geological Exploration in Lava Area Based on GPS. Earth sci. res. j. [Internet]. 1 de abril de 2020 [citado 15 de julio de 2024];24(2):207-14. Disponible en: https://revistas.unal.edu.co/index.php/esrj/article/view/87956

Descargar cita

CrossRef Cited-by

CrossRef citations4

1. Li Hong, Songling Pang, Meiyun Geng, Sihan Wang. (2021). The GIS study on the spatial structure and visual perception of historical districts in winter cities. Arabian Journal of Geosciences, 14(12) https://doi.org/10.1007/s12517-021-07481-w.

2. Jing Rao. (2021). Coordination degree of marine biological ecological resources based on multi-source monitoring data. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06993-9.

3. Yongjie Zheng, Pan Wang, Yanjun Wang, Guangsheng Fu. (2021). Design of a Hydrogeological Monitoring System Based on a Computer Network. 2021 IEEE International Conference on Industrial Application of Artificial Intelligence (IAAI). , p.40. https://doi.org/10.1109/IAAI54625.2021.9699942.

4. Xu Zeng, Bo Wang, Qian Cao, Aiming Wang, Peng Jia, Pei Zhang, Bohan Qiao. (2022). Characteristics of Jurassic source rocks and oil and gas exploration direction in the piedmont zone between the south‐western Qaidam Basin and Altun Mountain. Geological Journal, 57(10), p.4152. https://doi.org/10.1002/gj.4535.

Dimensions

PlumX

Visitas a la página del resumen del artículo

472

Descargas

Los datos de descargas todavía no están disponibles.