Published
HOJA BROWNIANA FRACCIONAL
FRACTIONAL BROWNIAN SHEET
Keywords:
Movimiento browniano fraccional, procesos estocásticos en dos parámetros, hoja browniana, procesos autosimilares, procesos con incrementos estacionarios (es)Fractional Brownian motion, two-parameter stochastic processes, Brownian sheet, selfsimilary processes, stationary increments processes (en)
Downloads
1Departamento de Estadística, Universidad Nacional de Colombia, Bogotá. E-mail: lblancoc@unal.edu.co.
2 Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá. E-mail: mjgarzonm@unal.edu.co.
Se presenta la hoja browniana fraccional (hBf) o movimiento browniano fraccional en dos parámetros y algunas de sus propiedades importantes como son la autosimilaridad y la estacionaridad de los incrementos. Se incluyen además dos representaciones de la hBf, análogas a la representación en pro medio móvil y en intervalo finito del movimiento browniano fraccional.
Palabras Clave: Movimiento browniano fraccional, procesos estocásticos en dos parámetros, hoja browniana, procesos autosimilares, procesos con incrementos estacionarios.
Fractional brownian sheet or two parameter fractional brownian motion and some important properties with selfsimilar and stationary increments are presented. Moreover, two representations for hBf analogous to moving average and on an interval representations for fractional brownian motion are included.
Keywords: Fractional Brownian motion, two-parameter stochastic proces ses, Brownian sheet, selfsimilary processes, stationary increments processes.
Texto completo disponible en PDF
Referencias
1. Ayache, A. & Xiao, Y. (2004), "Asymptotic properties and Hausdorff dimension of fractional Brownian sheets".
2. Bardina, X. & Jolis, M. (2000), "Weak approximation of the Brownian sheet from a Poisson process in the plane", Bernoulli 6(4), 653- 665.
3. Bardina, X., Jolis, M. & Tudor, C. (2002), Weak Convergence to the Fractional Brownian Sheet, Universidad Autónoma de Barcelona.
4. Erraoui, M., Nualart, D. & Ouknine, Y. (2003), "Hyperbolic stochastic partial differential equations with additive fractional brownian sheet", Stochastic Dynamics 3, 121- 139.
5. Figueroa, J. (2000), Construcción de procesos autosimilares con varianza finita, Sociedad Matemática Méxicana.
6. Garzón, J. (2002), "Representación de Wong-Zakai de martingalas de dos parámetros cuadrado integrables", Universidad Nacional de Colombia, Sede Bogotá. Trabajo de grado.
7. Leger, S. (2000), Stochastic Analysis of Multifractal Signal and Parameters" Estimation, PhD thesis, Universidad de Orleans, France.
8. Nualart, D. (2003), "Stochastic integration with respect to fractional Brownian motion and applications", Contemporary Mathematics 3(39), 336.
9. Oksendal, B. & Zhang, T. (2000), "Multiparameter fractional Brownian motion and quasi-linear stochastic differential equations", Stochastics and Stochastics Reports 71, 141- 163.
10. Stroock, D. (1982), Topics in Stochastic Differential Equations, Springer Verlag.
11. Tudor, C. & Viens, F. (2003), "Itô formula and local time for the fractional Brownian sheet", Electronic Journal of Probability 8(14), 1- 31.
12. Walsh, J. (1980), "An introduction to stochastic partial differential equations", Lecture Notes in Math 1215, 239- 491.
13. Wong, E. & Zakai, M. (1974), "Martingales and stochastic integrals for processes with a dimensional parameter", Z. Wahrscheinlichkeitstheorie and Verw, Gebiete 29, 109- 122.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2005 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).