Published
A Bayesian Approach to Parameter Estimation in Simplex Regression Model: A Comparison with Beta Regression
Un enfoque bayesiano para la estimación de los parámetros del modelo regresión Simplex: una comparación con la regresión Beta
Keywords:
Beta distribution, Gibbs sampler, Heterogeneous, Proportions, Simplex distribution, Variances (en)distribución beta, distribución simplex, muestreador de Gibbs, proporciones, varianza heterogénea. (es)
Downloads
Algunas variables están restringidas al intervalo abierto (0; 1) y para trabajar con ellas se han desarrollado diversos métodos bajo el esquema del análisis de regresión. La mayoría de ellos han sido concebidos originalmente para ser estimados por métodos de máxima verosimilitud. Los más naturales parecen descansar especialmente sobre las distribuciones Beta o Simplex.
En este trabajo se presenta el uso de técnicas Bayesianas para la estimación de los parámetros de la regresión Simplex respaldada con la aplicación de algunas simulaciones y comparaciones con la regresión Beta. Se presentan resultados para modelos de varianza constante y de varianza heterogénea para cada individuo. Se presenta un ejemplo con datos reales.
1Universidad de Valparaíso, Valparaíso, Chile. PhD Student. Email: freddy.vate01@gmail.com
Some variables are restricted to the open interval (0,1) and several methods have been developed to work with them under the scheme of the regression analysis. Most of research consider maximum likelihood methods and the use of Beta or Simplex distributions.
This paper presents the use of Bayesian techniques to estimate the parameters of the simplex regression supported on the implementation of some simulations and a comparison with Beta regression. We consider both models with constant variance and models with variance heterogeneity. Regressions are exemplified with heteroscedasticity.
Key words: Beta distribution, Gibbs sampler, Heterogeneous, Proportions, Simplex distribution, Variances.
Algunas variables están restringidas al intervalo abierto (0,1) y para trabajar con ellas se han desarrollado diversos métodos bajo el esquema del análisis de regresión. La mayoría de ellos han sido concebidos originalmente para ser estimados por métodos de máxima verosimilitud. Los más naturales parecen descansar especialmente sobre las distribuciones Beta o Simplex.
En este trabajo se presenta el uso de técnicas Bayesianas para la estimación de los parámetros de la regresión Simplex respaldada con la aplicación de algunas simulaciones y comparaciones con la regresión Beta. Se presentan resultados para modelos de varianza constante y de varianza heterogénea para cada individuo. Se presenta un ejemplo con datos reales.
Palabras clave: distribución beta, distribución simplex, muestreador de Gibbs, proporciones, varianza heterogénea.
Texto completo disponible en PDF
References
1. Barndorff-Nielsen, O. E. & Jørgensen, B. (1991), 'Some parametric models on the simplex', Journal of Multivariate Analysis 39, 106-116.
2. Blakely, T. & Collings, S. (2002), 'Is there a causal association between suicide rates and the political leanings of government?', Journal of Epidemiology and Community Health 56(10), 722.
3. Branscum, A. J., Johnson, W. O. & Thurmond, M. C. (2007), 'Bayesian Beta regression: Applications to household expenditure data and genetic distance between foot-and-mouth desease viruses', Australian & New Zealand Journal of Statistics 49(3), 287-301.
4. Buckley, J. (2003), 'Estimation of models with Beta-distributed dependent variables: A replication and extension of Paolino's study', Political Analysis 11, 204-205.
5. CNE, (2008), 'Consejo Nacional Electoral', http://www.cne.gob.ve.
6. Cepeda, E. (2012), Beta regression models: joint mean and variance modeling, Universidad Nacional de Colombia.
7. Cepeda, E. & Gamerman, D. (2001), 'Bayesian modeling of variance heterogeneity in normal regression models', Brazilian Journal of Probability and Statistics 14, 207-221.
8. Cepeda, E. & Garrido, L. (2011), Bayesian Beta regression models: joint mean and precision modeling, Universidad Nacional de Colombia.
9. Cook, D. O., Kieschnick, R. & McCullough, B. D. (2008), 'Regression analysis of proportions in finance with self selection', Journal of Empirical Finance 15, 860-867.
10. Cribari-Neto, F. & Zeileis, A. (2010), 'Beta regression in R', Journal of Empirical Finance 34(2), 1-24.
11. Eskelson, N. I., Madsen, L., Hagar, J. C. & Temesgen, H. (2011), 'Estimating Riparian understory vegetation cover with Beta regression and copula models', Forest Science 57(3), 212-221.
12. Ferrari, S. L. P. & Cribari-Neto, F. (2004), 'Beta regression for modeling rates and proportions', Journal of Applied Statistics 31(7), 799-815.
13. Gelman, A., Carlin, B. P., Stern, H. S. & Rubin, D. B. (2003), Bayes and Empirical Bayes Methods for Analysis, 2 edn, Chapman & Hall/CRC.
14. Giovanetti, A. C. (2007), Efeitos da especificaçao incorreta da funçao de ligaçao no modelo de regressão beta, Master's thesis, USP, Sao Paulo.
15. INE, (2008), 'Instituto Nacional de Estadística', http://www.ine.gob.ve.
16. Johnson, N. L., Kotz, S. & Balakrishnan, N. (1994), Continuous Univariate Distributions, Vol. 2, 2 edn, John Wiley & Sons.
17. Jørgensen, B. (1997), The Theory of Dispersion Models, Monographs on Statistics and Applied Probability, Taylor & Francis.
18. Kieschnick, R. & McCullough, B. D. (2003), 'Regression analysis of variates observed on (0,1): percentages, proportions and fractions', Statistical Modelling 3, 193-213.
19. Martyn, P. (2011), rjags: Bayesian graphical models using MCMC. R package version 3-5.
20. McCullagh, P. & Nelder, J. A. (1989) Generalized Linear Models, Second Edition in'Monographs on Statistics and Applied Probability' number 37 London: Chapman & Hall
21. Miyashiro, E. S. (2008), Modelos de regressão Beta e simplex para análise de proporçoes no modelo de regressão Beta, Master's thesis, USP, Sao Paulo.
22. Ospina, R. & Ferrari, S. L. (2010), 'Inflated beta distributions', Statistical Papers 51, 111-126.
23. Page, A., Morrell, S. & Taylor, R. (2002), 'Suicide and political regime in New South Wales and Australia during the 20th century', Journal of Epidemiology and Community Health 56(10), 766-772.
24. Paolino, P. (2001), 'Maximum likelihood estimation of models with Beta-distributed dependent variables', Political Analysis 9, 325-346.
25. R Development Core Team, (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
26. Santos, L. A. (2011), Modelos de Regressão Simplex: Resíduos de Pearson Corrigidos e Aplicações, PhD thesis, Escola Superior de Agricultura ''Luiz de Queiroz'', Universidade de São Paulo.
27. Shaw, M., Dorling, D. & Smith, G. D. (2002), 'Mortality and political climate: How suicide rates have risen during periods of Conservative government, 1901-2000', Journal of Epidemiology and Community Health 56(10), 723-725.
28. Smith, G. D. & Dorling, D. (1996), '''I'm all right, John'': Voting patterns and mortality in England and Wales', British Medical Journal 313(21), 1573-1577.
29. Smithson, M. & Verkuilen, J. (2006), 'A better lemon squeezer? Maximum-likelihood regression with Beta-distributed dependent variables', Psychological Methods 11, 54-71.
30. Song, X. K. (2007), Correlated Data Analysis: Modeling, Analytics, and Applications, Springer, New York.
31. Song, X., Qiu, Z. & Tan, M. (2004), 'Modelling heterogeneous dispersion in marginal models for longitudinal proportional data', Biometrical Journal 5, 540-553.
32. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & van der Linde, A. (2002), 'Bayesian measures of model complexity and fit (with discussion)', Statistical Methodology Series B 64(4), 583-639.
33. Sturtz, S., Ligges, U. & Gelman, A. (2005), 'R2WinBUGS: a package for running WinBUGS from R', Journal of Statistical Software 12(3), 1-16.
34. Verkuilen, J. & Smithson, M. (2011), 'Mixed and mixture regression models for continuous bounded responses using the Beta distribution', Journal of Educational and Behavioral Statistics 000, 1-32.
35. Zimprich, D. (2010), 'Modeling change in skewed variables using mixed Beta regression models', Research in Human Development 7(1), 9-26.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv36n1a01,
AUTHOR = {López, Freddy Omar},
TITLE = {{A Bayesian Approach to Parameter Estimation in Simplex Regression Model: A Comparison with Beta Regression}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2013},
volume = {36},
number = {1},
pages = {1-21}
}
References
Barndorff-Nielsen, O. E. & Jørgensen, B. (1991), ‘Some parametric models on the simplex’, Journal of Multivariate Analysis 39, 106–116.
Blakely, T. & Collings, S. (2002), ‘Is there a causal association between suicide rates and the political leanings of government?’, Journal of Epidemiology and Community Health 56(10), 722.
Branscum, A. J., Johnson, W. O. & Thurmond, M. C. (2007), ‘Bayesian Beta regression: Applications to household expenditure data and genetic distance between foot-and-mouth desease viruses’, Australian & New Zealand Journal of Statistics 49(3), 287–301.
Buckley, J. (2003), ‘Estimation of models with Beta-distributed dependent variables: A replication and extension of Paolino’s study’, Political Analysis 11, 204–205.
Cepeda, E. (2012), Beta regression models: Joint mean and variance modeling, Technical report, Universidad Nacional de Colombia.
Cepeda, E. & Gamerman, D. (2001), ‘Bayesian modeling of variance heterogeneity in normal regression models’, Brazilian Journal of Probability and Statistics 14, 207–221.
Cepeda, E. & Garrido, L. (2011), Bayesian Beta regression models: Joint mean and precision modeling, Technical report, Universidad Nacional de Colombia.
CNE (2008), ‘Consejo Nacional Electoral’, http://www.cne.gob.ve.
Cook, D. O., Kieschnick, R. & McCullough, B. D. (2008), ‘Regression analysis of proportions in finance with self selection’, Journal of Empirical Finance 15, 860–867.
Cribari-Neto, F. & Zeileis, A. (2010), ‘Beta regression in R’, Journal of Empirical Finance 34(2), 1–24.
Eskelson, N. I., Madsen, L., Hagar, J. C. & Temesgen, H. (2011), ‘Estimating Riparian understory vegetation cover with Beta regression and copula models’, Forest Science 57(3), 212–221.
Ferrari, S. L. P. & Cribari-Neto, F. (2004), ‘Beta regression for modeling rates and proportions’, Journal of Applied Statistics 31(7), 799–815.
Gelman, A., Carlin, B. P., Stern, H. S. & Rubin, D. B. (2003), Bayes and Empirical Bayes Methods for Analysis, 2 edn, Chapman & Hall/CRC.
Giovanetti, A. C. (2007), Efeitos da especificaçao incorreta da funçao de ligaçao no modelo de regressão beta, Master’s thesis, USP, Sao Paulo.
INE (2008), ‘Instituto Nacional de Estadística’, http://www.ine.gob.ve.
Johnson, N. L., Kotz, S. & Balakrishnan, N. (1994), Continuous Univariate Distributions, Vol. 2, 2 edn, John Wiley & Sons.
Jørgensen, B. (1997), The Theory of Dispersion Models, Monographs on Statistics and Applied Probability, Taylor & Francis.
Kieschnick, R. & McCullough, B. D. (2003), ‘Regression analysis of variates observed on (0,1): Percentages, proportions and fractions’, Statistical Modelling 3, 193–213.
Martyn, P. (2011), rjags: Bayesian graphical models using MCMC. R package version 3-5.
McCullagh, P. & Nelder, J. A. (1989), Generalized Linear Models, Second Edition, number 37 in ‘Monographs on Statistics and Applied Probability’, London: Chapman & Hall.
Miyashiro, E. S. (2008), Modelos de regressão Beta e simplex para análise de proporçoes no modelo de regressão Beta, Master’s thesis, USP, Sao Paulo.
Ospina, R. & Ferrari, S. L. (2010), ‘Inflated beta distributions’, Statistical Papers 51, 111–126.
Page, A., Morrell, S. & Taylor, R. (2002), ‘Suicide and political regime in New South Wales and Australia during the 20th century’, Journal of Epidemiology and Community Health 56(10), 766-772.
Paolino, P. (2001), ‘Maximum likelihood estimation of models with Betadistributed dependent variables’, Political Analysis 9, 325–346.
R Development Core Team (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
Santos, L. A. (2011), Modelos de Regressão Simplex: Resíduos de Pearson Corrigidos e Aplicações, PhD thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo.
Shaw, M., Dorling, D. & Smith, G. D. (2002), ‘Mortality and political climate: How suicide rates have risen during periods of Conservative government, 1901–2000’, Journal of Epidemiology and Community Health 56(10), 723–725.
Smith, G. D. & Dorling, D. (1996), “ I’m all right, John”: Voting patterns and mortality in England and Wales’, British Medical Journal 313(21), 1573–1577.
Smithson, M. & Verkuilen, J. (2006), ‘A better lemon squeezer? Maximumlikelihood regression with Beta-distributed dependent variables’, Psychological Methods 11, 54–71.
Song, X. K. (2007), Correlated Data Analysis: Modeling, Analytics, and Applications, Springer, New York.
Song, X., Qiu, Z. & Tan, M. (2004), ‘Modelling heterogeneous dispersion in marginal models for longitudinal proportional data’, Biometrical Journal 5, 540–553.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & van der Linde, A. (2002), ‘Bayesian measures of model complexity and fit (with discussion)’, Statistical Methodology Series B 64(4), 583–639.
Sturtz, S., Ligges, U. & Gelman, A. (2005), ‘R2WinBUGS: A package for running WinBUGS from R’, Journal of Statistical Software 12(3), 1–16.
Verkuilen, J. & Smithson, M. (2011), ‘Mixed and mixture regression models for continuous bounded responses using the Beta distribution’, Journal of Educational and Behavioral Statistics 000, 1–32.
Zimprich, D. (2010), ‘Modeling change in skewed variables using mixed Beta regression models’, Research in Human Development 7(1), 9–26.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2013 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).