Published
The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data
La familia de distribuciones alfa-potencia log-skew-normal usando datos de precipitación
Keywords:
symmetry, Fisher information matrix, Kurtosis, Likelihood ratio test, Maximum likelihood estimator. (en)Asimetría, curtosis, estimador máxima verosimilitud, matriz de información de Fisher, test de razón de verosimilitud. (es)
Downloads
Presentamos una nueva familia de distribuciones para datos positivos basada en el modelo skew-normal alpha-power (PSN), incluyendo un nuevo parámetro el cual hace el modelo log-skew-normal alpha-power (LPSN) más flexible que los modelos log-normal (LN) y log-skew-normal (LSN). El modelo LPSN contiene el modelo LN y el modelo LSN como casos particulares. Además, modela datos positivos con asimetría y curtosis más allá de lo permitido por la distribución LN. Datos de precipitación ilustran la utilidad del modelo LPSN siendo menos influenciado por outliers.
1Universidad de Córdoba, Departamento de Matemáticas y Estadística, Montería, Colombia. Professor. Email: gmartinez@correo.unicordoba.edu.co
2Univesidad Nacional de Colombia, Facultad de Ciencias, Departamento de Estadística, Bogotá D.C, Colombia. Assistant professor. Email: svergarac@unal.edu.co
3Univesidad Nacional de Colombia, Facultad de Ciencias, Departamento de Estadística, Bogotá D.C, Colombia. Assistant professor. Email: lgonzalezg@unal.edu.co
We present a new set of distributions for positive data based on a skew-normal alpha-power (PSN) model including a new parameter which in turn makes the log-skew-normal alpha-power (LPSN) model more flexible than both the log-normal (LN) model and log-skew-normal (LSN) model. The LPSN model contains the LN model and LSN model as special cases. Furthermore, it models positive data with asymmetry and kurtosis larger than the one permitted by the LN distribution. Precipitation data illustrates the usefulness of the LPSN model being less influenced by outliers.
Key words: Asymmetry, Fisher information matrix, Kurtosis, Likelihood ratio test, Maximum likelihood estimator.
Presentamos una nueva familia de distribuciones para datos positivos basada en el modelo skew-normal alpha-power (PSN), incluyendo un nuevo parámetro el cual hace el modelo log-skew-normal alpha-power (LPSN) más flexible que los modelos log-normal (LN) y log-skew-normal (LSN). El\linebreak modelo LPSN contiene el modelo LN y el modelo LSN como casos particulares. Además, modela datos positivos con asimetría y curtosis más allá de lo permitido por la distribución LN. Datos de precipitación ilustran la utilidad del modelo LPSN siendo menos influenciado por outliers.
Palabras clave: asimetría, curtosis, estimador máxima verosimilitud, matriz de información de Fisher, test de razón de verosimilitud.
Texto completo disponible en PDF
References
1. Arnold, B. C. & Beaver, R. (2002), 'Skewed multivariate models related to hidden truncation and/or selective reporting', Test 11(1), 37-39.
2. Azzalini, A. (1985), 'A class of distributions which includes the normal ones', Scandinavian Journal of Statistics 12(2), 171-178.
3. Chaibub-Neto, E. & Branco, M. (2003), Bayesian Reference Analysis for Binomial Calibration Problem, IME-USP.
4. Chiogna, M. (1998), 'Some results on the scalar skew-normal distribution', Journal Italian Statistical Society 1, 1-13.
5. DiCiccio, T. J. & Monti, A. C. (2004), 'Inferential aspects of the skew exponential power distribution', Journal of the American Statistical Association 99, 439-450.
6. Durrans, S. R. (1992), 'Distributions of fractional order statistics in hydrology', Water Resources Research, 1649-1655.
7. Gupta, D. & Gupta, R. C. (2008), 'Analyzing skewed data by power normal model', Test 17(1), 197-210.
8. Gupta, R. S. & Gupta, R. D. (2004), 'Generalized skew normal model', Test 13(2), 501-524.
9. IDEAM, (2006), Estudio Agroclimático del Departamento de Córdoba, Fondo Editorial Universidad de Córdoba.
10. Lin, G. D. & Stoyanov, J. (2009), 'The logarithmic skew-normal distributions are moment-indeterminate', Journal of Applied Probability 46(3), 909-916.
11. Martínez-Flórez, G. (2011), Extensões do modelo α-potêncial, Tese de Doutorado, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo.
12. R Development Core Team, (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
13. Rotnitzky, A., Cox, D. R., Bottai, M. & Robins, J. (2000), 'Likelihood-based inference with singular information matrix', Bernoulli 6(2), 243-284.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv36n1a03,
AUTHOR = {Martínez-Flórez, Guillermo and Vergara-Cardozo, Sandra and González, Luz Mery},
TITLE = {{The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2013},
volume = {36},
number = {1},
pages = {43-57}
}
References
Akaike, H. (1974), ‘A new look at statistical model identification’, IEEE Transaction on Automatic Control (AU-19), 716–722.
Arnold, B. C. & Beaver, R. (2002), ‘Skewed multivariate models related to hidden truncation and/or selective reporting’.
Azzalini, A. (1985), ‘A class of distributions which includes the normal ones’, Scandinavian Journal of Statistics (12), 171–178.
Chaibub-Neto, E. & Branco, M. (2003), Bayesian Reference Analysis for Binomial Calibration Problem, IME-USP.
Chiogna, M. (1998), ‘Some results on the scalar skew-normal distribution’, Journal Italian Statistical Society 1, 1–13.
DiCiccio, T. J. & Monti, A. C. (2004), ‘Inferential aspects of the skew exponential power distribution’, Journal of the American Statistical Association 99, 439–450.
Durrans, S. R. (1992), ‘Distributions of fractional order statistics in hydrology’, Water Resources Research pp. 1649–1655.
Gupta, D. & Gupta, R. C. (2008), ‘Analyzing skewed data by power normal model’,Test 17(1), 197–210.
Gupta, R. S. & Gupta, R. D. (2004), ‘Generalized skew normal model’, Test 13(2), 501–524.
IDEAM (2006), Estudio Agroclimático del Departamento de Córdoba, Fondo Editorial Universidad de Córdoba.
Lin, G. D. & Stoyanov, J. (2009), ‘The logarithmic skew-normal distributions are moment-indeterminate’, Journal of Applied Probability 46(3), 909–916.
Martínez-Flórez, G. (2011), Extensões do modelo -potêncial, Tese de doutorado, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo.
R Development Core Team (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
Rotnitzky, A., Cox, D. R., Bottai, M. & Robins, J. (2000), ‘Likelihood-based inference with singular information matrix’, Bernoulli 6(2), 243–284.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2013 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).