Published
Goodness of fit tests for Rayleigh distribution based on Phi-divergence
Pruebas de bondad de ajuste para distribución Rayleigh basadas en Divergencia Phi
DOI:
https://doi.org/10.15446/rce.v40n2.60375Keywords:
Rayleigh distribution, Goodness of fit test, Phi-divegence, Monte Carlo simulation. (en)distribución Rayleigh, Divergencia Phi, Pruebas de bondad de ajuste, Simulaciones Monte Carlo (es)
Downloads
References
Alizadeh Noughabi, H. & Balakrishnan, N. (2016), `Tests of goodness of fit based on Phi-divergence', Journal of Applied Statistics 43(3), 412-429.
Alizadeh Noughabi, R., Alizadeh Noughabi, H. & Ebrahimi Moghaddam Behdadi, A. (2014), `An entropy test for the rayleigh distribution and power comparison', Journal of Statistical Computation and Simulation 84(1), 151-158.
Best, D., Rayner, J. & Thas, O. (2010), `Easily applied tests of fit for the Rayleigh distribution', Synkhya, B 72, 254-263.
Csiszar, I. (1967), `On topology properties of f-divergences', Studia Scientiarum Mathematicarum Hungarica 2, 329-339.
Dey, S., Dey, T. & Kundu, D. (2014), `Two parameter Rayleigh distribution: Different methods of estimation', merican Journal of Mathematical and Management Sciences 33(1), 55-74.
Jahanshahi, S., Habibi Rad, A. & Fakoor, V. (2016), `A goodness-of-fit test for Rayleigh distribution based on Helinger distance', Annals of Data Sciences 3(4), 401-411.
Johnson, N., Kotz, S. & Balakrishnan, N. (1994), Continuous univariate distributions, Wiley.
Lawless, J. F. (1982), Statistical model and methods for lifetime data, Wiley, New York.
Liese, F. & Vajda, I. (2006), `On divergences and informations in statistics and information theory', IEEE Transactions on Information Theory 52, 4394-4412.
Mahdizadeh, M. (2012), `On the use of ranked set samples in entropy based test of fit for the Laplace distribution', Revista Colombiana de Estadística 35(3), 443-455.
Siddiqui, M. (1962), `Some problems connected with Rayleigh distribution', Journal of Research of the National Bureau of Standards 66D, 167-174.
Soliman, A. & Al-Aboud, F. M. (2008), `Bayesian inference using record values from Rayleigh model with application', European Journal of Operational Research 185, 659-672.
Zamanzade, E. & Mahdizadeh, M. (2017), `Entropy estimation from ranked set samples with application to test of fit', Revista Colombiana de Estadística 40(2), 223-241.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Yuxin Gong, Shen Wang, Tingyue Yu, Xunzhi Jiang, Fanghui Sun. (2024). Improving adversarial robustness using knowledge distillation guided by attention information bottleneck. Information Sciences, 665, p.120401. https://doi.org/10.1016/j.ins.2024.120401.
2. Neriman Akdam. (2023). Bayes Estimation for the Rayleigh–Weibull Distribution Based on Progressive Type-II Censored Samples for Cancer Data in Medicine. Symmetry, 15(9), p.1754. https://doi.org/10.3390/sym15091754.
3. Mintodê Nicodème Atchadé, Melchior N’bouké, Aliou Moussa Djibril, Shabnam Shahzadi, Eslam Hussam, Ramy Aldallal, Huda M. Alshanbari, Ahmed M. Gemeay, Abdal-Aziz H. El-Bagoury, Anoop Kumar. (2023). A New Power Topp–Leone distribution with applications to engineering and industry data. PLOS ONE, 18(1), p.e0278225. https://doi.org/10.1371/journal.pone.0278225.
4. Majdah M. Badr. (2019). Goodness-of-fit tests for the Compound Rayleigh distribution with application to real data. Heliyon, 5(8), p.e02225. https://doi.org/10.1016/j.heliyon.2019.e02225.
5. Seyed Mahdi Amir Jahanshahi, Arezo Habibi Rad, Vahid Fakoor. (2020). Some New Goodness-of-fit Tests for Rayleigh Distribution. Pakistan Journal of Statistics and Operation Research, , p.305. https://doi.org/10.18187/pjsor.v16i2.3087.
6. Safar M. Alghamdi, Mansour Shrahili, Amal S. Hassan, Rokaya Elmorsy Mohamed, Ibrahim Elbatal, Mohammed Elgarhy. (2023). Analysis of Milk Production and Failure Data: Using Unit Exponentiated Half Logistic Power Series Class of Distributions. Symmetry, 15(3), p.714. https://doi.org/10.3390/sym15030714.
7. K. M. Vaisakh, Thomas Xavier, E. P. Sreedevi. (2023). Goodness of fit test for Rayleigh distribution with censored observations. Journal of the Korean Statistical Society, 52(4), p.794. https://doi.org/10.1007/s42952-023-00222-7.
8. Abdullah Ali H. Ahmadini, Muhammad Ahsan-ul-Haq, Muhammad Nasir Saddam Hussain. (2024). A new two-parameter over-dispersed discrete distribution with mathematical properties, estimation, regression model and applications. Heliyon, 10(17), p.e36764. https://doi.org/10.1016/j.heliyon.2024.e36764.
9. Babulal Seal, Proloy Banerjee, Shreya Bhunia, Sanjoy Kumar Ghosh. (2023). Bayesian Estimation in Rayleigh Distribution under a Distance Type Loss Function. Pakistan Journal of Statistics and Operation Research, , p.219. https://doi.org/10.18187/pjsor.v19i2.4130.
10. Shawn Carl Liebenberg, Joseph Ngatchou-Wandji, James Samuel Allison. (2022). On a new goodness-of-fit test for the Rayleigh distribution based on a conditional expectation characterization. Communications in Statistics - Theory and Methods, 51(15), p.5226. https://doi.org/10.1080/03610926.2020.1836220.
11. V. Ahrari, S. Baratpour, A. Habibirad, V. Fakoor. (2022). Goodness of fit tests for Rayleigh distribution based on quantiles. Communications in Statistics - Simulation and Computation, 51(2), p.341. https://doi.org/10.1080/03610918.2019.1651336.
12. Mintodê Nicodème Atchadé, Melchior A.G. N'bouké, Aliou Moussa Djibril, Aned Al Mutairi, Manahil SidAhmed Mustafa, Eslam Hussam, Hassan Alsuhabi, Said G. Nassr. (2024). A new Topp-Leone Kumaraswamy Marshall-Olkin generated family of distributions with applications. Heliyon, 10(2), p.e24001. https://doi.org/10.1016/j.heliyon.2024.e24001.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).