Published

2020-07-01

Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials

Método para obtener un vector de hiperparámetros: aplicación en ensayos Bernoulli

DOI:

https://doi.org/10.15446/rce.v43n2.81744

Keywords:

Laplace’s Method, Bayesian Inference, System of Nonlinear Equations (en)
Método de Laplace, Inferencia Bayesiana, Sistema de Ecuaciones no Lineales (es)

Downloads

Authors

The main difficulties when using the Bayesian approach are obtaining information from the specialist and obtaining hyperparameters values of the assumed probability distribution as representative of knowledge  external to the  data. In addition to the  fact  that  a large  part  of the  literature on this subject is characterized by considering prior conjugated distributions for the parameter of interest. An method is proposed  to find the hyperparameters of a nonconjugated prior  distribution. The following  scenarios were considered for Bernoulli trials: four prior distributions (Beta, Kumaraswamy, Truncated Gamma   and   Truncated  Weibull) and four scenarios  for  the  generating process. Two necessary,  but not sufficient  conditions were  identified to ensure   the  existence of  a  vector of  values for  the  hyperparameter. The Truncated Weibull prior distribution performed the worst.  The methodology was  used  to estimate the  prevalence of two  transmitted sexually infections in an Colombian  indigenous community.

Las  principales dificultades cuando  se utiliza  el enfoque Bayesiano son la  obtención  de  información  del  especialista  y  la obtención de  valores de los hiperparámetros de la distribución de probabilidad asumida como representante del conocimiento a priori. Adicionalmente, gran parte  de la literatura sobre este tema considera distribuciones a priori conjugadas para  el parámetro de interés.  Un método  es propuesto para  encontrar los valores de los hiperparámetros de una distribución a priori no conjugada. Los siguientes escenarios son  considerados para  ensayos Bernoulli:  cuatro distribuciones a  priori  (Beta, Kumaraswamy, Gamma  Truncada y  Weibull  Truncada) y cuatro escenarios para  el  proceso  generador. Dos condiciones necesarias, pero  no  suficientes fueron  identificadas para  asegurar la  existencia de  un vector de valores para  los hiperparámetros. La distribución a priori  Weibull Truncada fue la que peor desempeño presentó.  La metodología fue utilizada para  estimar la prevalencia de dos infecciones de transmisión sexual en una comunidad indígena  de Colombia.

References

Azevedo-Filho, A. & Shachter, R. D. (1994), Laplace’s method approximations for probabilistic inference in belief networks with continuous variables, in R. Lopez & D. Poole, eds, Uncertainty in Artificial Intelligence: Proceedings of the Tenth Conference, Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 28–36.

Bruijn, N. G. D. (1961), Asymptotic Methods in Analysis, 2 edn, CourierCorporation, Ámsterdam.

Chaloner, K. M. & Duncan, G. T. (1983), Assessment of a beta prior distribution: PM elicitation, Journal of the Royal Statistical Society: Series D (The Statistician) 32(1-2), 174–180.

Dennis-Jr, J. E. & Schnabel, R. B. (1996), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Siam.

Erdélyi, A. (1956), Asymptotic expansions, number 3, Courier Corporation. Flórez, A. & Correa, J. (2015), Elicitación de una distribución subjetiva del vector de parámetros π de la distribución multinomial, Tesis de maestría,Universidad Nacional de Colombia, Colombia.

Fowler & Floyd, J. (1995), Improving Survey Questions: Design and Evaluation, Vol. 38, Sage.

Garthwaite, P. H., Kadane, J. B. & OHagan, A. (2005), Statistical methods for eliciting probability distributions, Journal of the American Statistical Association 100(470), 680–701.

Hogarth, R. M. (1975), Cognitive processes and the assessment of subjective probability distributions, Journal of the American Statistical Association 70(350), 271–289.

Hogarth, R. M. (1987), Judgement and choice: The psychology of decision, 2 edn.

Kadane, J. B. & Winkler, R. L. (1988), Separating probability elicitation from utilities, Journal of the American Statistical Association 83(402), 357–363.

Kass, R. E. & Raftery, A. E. (1995), Bayes factors, Journal of the american statistical association 90(430), 773–795.

Laplace, P. S. (1773), Memoir on the probability of the causes of events, Statistical Science 1(3), 364–378.

Moala, F. A. & Penha, D. L. (2016), Elicitation methods for beta prior distribution, Revista Brasileira de Biometria 34(1), 49–62.

Murphy, A. H. & Winkler, R. L. (1974), Credible interval temperature forecasting: some experimental results, Monthly Weather Review 102(11), 784–794.

Penha, D. L. (2014), Inferência bayesiana não-paramétrica para elicitação da função de contabilidade. Universidade Estadual Paulista (UNESP).

Sindhu, T. N., Feroze, N. & Aslam, M. (2013), Bayesian analysis of the kumaraswamy distribution under failure censoring sampling scheme, International Journal of Advanced Science and Technology 51, 39–58.

Tierney, L. & Kadane, J. B. (1986), Accurate approximations for posterior moments and marginal densities, Journal of the American Statistical Association 81(393), 82–86.

Tovar, J. R. (2012), Eliciting beta prior distributions for binomial sampling, Revista Brasileira de Biometria 30(1), 159–172.

Tversky, A. & Kahneman, D. (1973), Availability: A heuristic for judging frequency and probability, Cognitive Psychology 2(5), 207–232.

Tversky, A. & Kahneman, D. (1974), Judgment under uncertainty: Heuristics and biases, Science 185(4157), 1124–1131.

Vidal, I. (2014), A bayesian analysis of the gumbel distribution: an application to extreme rainfall data, Stochastic Environmental Research and Risk Assessment 28(3), 571–582.

Winkler, R. L. (1967), The assessment of prior distributions in bayesian analysis, Journal of the American Statistical Association 62(319), 776–800.

How to Cite

APA

Torres Ome, L. E. and Tovar Cuevas, J. R. (2020). Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials. Revista Colombiana de Estadística, 43(2), 183–209. https://doi.org/10.15446/rce.v43n2.81744

ACM

[1]
Torres Ome, L.E. and Tovar Cuevas, J.R. 2020. Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials. Revista Colombiana de Estadística. 43, 2 (Jul. 2020), 183–209. DOI:https://doi.org/10.15446/rce.v43n2.81744.

ACS

(1)
Torres Ome, L. E.; Tovar Cuevas, J. R. Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials. Rev. colomb. estad. 2020, 43, 183-209.

ABNT

TORRES OME, L. E.; TOVAR CUEVAS, J. R. Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials. Revista Colombiana de Estadística, [S. l.], v. 43, n. 2, p. 183–209, 2020. DOI: 10.15446/rce.v43n2.81744. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/81744. Acesso em: 28 mar. 2025.

Chicago

Torres Ome, Llerzy Esneider, and Jose Rafael Tovar Cuevas. 2020. “Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials”. Revista Colombiana De Estadística 43 (2):183-209. https://doi.org/10.15446/rce.v43n2.81744.

Harvard

Torres Ome, L. E. and Tovar Cuevas, J. R. (2020) “Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials”, Revista Colombiana de Estadística, 43(2), pp. 183–209. doi: 10.15446/rce.v43n2.81744.

IEEE

[1]
L. E. Torres Ome and J. R. Tovar Cuevas, “Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials”, Rev. colomb. estad., vol. 43, no. 2, pp. 183–209, Jul. 2020.

MLA

Torres Ome, L. E., and J. R. Tovar Cuevas. “Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials”. Revista Colombiana de Estadística, vol. 43, no. 2, July 2020, pp. 183-09, doi:10.15446/rce.v43n2.81744.

Turabian

Torres Ome, Llerzy Esneider, and Jose Rafael Tovar Cuevas. “Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials”. Revista Colombiana de Estadística 43, no. 2 (July 1, 2020): 183–209. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/81744.

Vancouver

1.
Torres Ome LE, Tovar Cuevas JR. Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials. Rev. colomb. estad. [Internet]. 2020 Jul. 1 [cited 2025 Mar. 28];43(2):183-209. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/81744

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Usage
  • SciELO - Full Text Views: 175
  • SciELO - Abstract Views: 25
  • Captures
  • Mendeley - Readers: 2

Article abstract page views

303

Downloads