Published

2022-07-14

On Cumulative Residual Renyi's Entropy

Sobre la entropía residual acumulada de Renyi

DOI:

https://doi.org/10.15446/rce.v45n2.96844

Keywords:

Aging classes, Cumulative Residual Entropy, Mean residual lifetime, Stochastic Orders, Shannon Entropy, Tsallis Entropy (en)
Clases de envejecimiento, Entropía residual acumulativa, Vida media residual, Órdenes estocásticas, Entropía de Shannon, Entropía Tsallis (es)

Downloads

Authors

  • Vali Zardasht University of Mohaghegh Ardabili

At the entropy measures and their generalization path, in the direction of statistics and information science, recently, Sunoj & Linu (2012) proposed the cumulative residual Renyi's entropy  of order α and its dynamic version and studied its main properties. In this paper, we introduce an alternative measure of cumulative residual Renyi's entropy (CRRE) of order α which, unlike the mentioned one, is positive for all distributions and all values of α. We also consider its dynamic version and study their main properties in the context of reliability theory and stochastic orders. We give an estimator of the proposed CRRE and investigate its exact and asymptotic distribution. Numerous examples illustrating the theory are also given.

En las medidas de entropía y su camino de generalización, en la dirección de las estadísticas y la ciencia de la información, recientemente, Sunoj & Linu (2012) propuso el residual acumulativo la entropía de Renyi de orden α y su versión dinámica y se estudiaron sus principales propiedades. En este artículo presentamos una medida alternativa de la entropía residual acumulada de Renyi (CRRE) de orden α que, a diferencia de la mencionada, es positiva para todas las distribuciones y todos los valores de α. También consideramos su versión dinámica y estudiamos sus principales propiedades en el contexto de la teoría de la confiabilidad y los órdenes estocásticos. Damos un estimador del CRRE propuesto e investigamos su distribución exacta y asintótica. También se dan numerosos ejemplos que ilustran la teoría.

References

Abraham, B. & Sankaran, P. (2005), 'Renyi's entropy for residual lifetime distribution', Statistical Papers 46(1), 17-30. DOI: https://doi.org/10.1007/s00362-005-0270-y

Belzunce, F., Pinar, J. F. & Ruiz, J. M. (2005), 'On testing the dilation order and HNBUE alternatives', Annals of the Institute of Statistical Mathematic 57(4), 803-815. DOI: https://doi.org/10.1007/BF02915440

Crescenzo, A. D. & Longobardi, M. (2009), On cumulative entropies and lifetime estimations, in 'International Work-Conference on the Interplay Between Natural and Artificial Computation', Springer, pp. 132-141. DOI: https://doi.org/10.1007/978-3-642-02264-7_15

Farris, F. A. (2010), 'The Gini Index and Measures of Equitability', American Mathematical Monthly 57(12), 851-864. DOI: https://doi.org/10.4169/000298910x523344

Helmers, R. (1977), A strong law of large numbers for linear combinations of order statistics, Mathematics Centrum, Amsterdam.

Nanda, A. K. & Chowdhury, S. (2019), 'Shannon's entropy and Its Generalizations towards Statistics, Reliability and Information Science during 1948-2018', arXiv:1901.09779[stat.OT] .

Navarro, J., del Aguila, Y. & Asadi, M. (2010), 'Some new results on the cumulative residual entropy', Journal of Statistical Planning and Inference 140(1), 310-322. DOI: https://doi.org/10.1016/j.jspi.2009.07.015

Rajesh, G. & Sunoj, S. M. (2019), 'Some properties of cumulative Tsallis entropy of order α', Statistical papers 60(3), 583-593. DOI: https://doi.org/10.1007/s00362-016-0855-7

Rao, M., Chen, Y. & Vemuri, B. (2004), 'Cumulative residual entropy: a new measure of information', IEEE Transactions on Information Theory 50(6), 1220-1228. DOI: https://doi.org/10.1109/TIT.2004.828057

Rényi, A. (1961), On measures of entropy and information, in 'Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics', Vol. 4, University of California Press, pp. 547-562.

Shaked, M. & Shanthikumar, J. G. (2007), Stochastic Orders, Springer, New York. Shannon, C. (1948), 'A mathematical theory of communication', The Bell System Technical Journal 27, 379-423. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Shao, J. (2003), Mathematical Statistics, Springer, New York. DOI: https://doi.org/10.1007/b97553

Stigler, S. M. (1974), 'Linear functions of order statistics with smooth weight functions', Annals of Statistics 2, 676-693. DOI: https://doi.org/10.1214/aos/1176342756

Sunoj, S. M. & Linu, M. N. (2012), 'Dynamic cumulative residual Renyi's entropy', Statistics: A Journal of Theoretical and Applied Statistics 46(1), 41-56. DOI: https://doi.org/10.1080/02331888.2010.494730

Wellner, J. A. (1977), 'A Gelivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics', Annals of Statistics 5, 473-480. DOI: https://doi.org/10.1214/aos/1176343844

Zardasht, V. (2015), 'A test for the increasing convex order based on the cumulative residual entropy', Journal of the Korean Statistical Society 44, 491-497. DOI: https://doi.org/10.1016/j.jkss.2015.01.002

How to Cite

APA

Zardasht, V. (2022). On Cumulative Residual Renyi’s Entropy. Revista Colombiana de Estadística, 45(2), 257–273. https://doi.org/10.15446/rce.v45n2.96844

ACM

[1]
Zardasht, V. 2022. On Cumulative Residual Renyi’s Entropy. Revista Colombiana de Estadística. 45, 2 (Jul. 2022), 257–273. DOI:https://doi.org/10.15446/rce.v45n2.96844.

ACS

(1)
Zardasht, V. On Cumulative Residual Renyi’s Entropy. Rev. colomb. estad. 2022, 45, 257-273.

ABNT

ZARDASHT, V. On Cumulative Residual Renyi’s Entropy. Revista Colombiana de Estadística, [S. l.], v. 45, n. 2, p. 257–273, 2022. DOI: 10.15446/rce.v45n2.96844. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/96844. Acesso em: 28 jan. 2025.

Chicago

Zardasht, Vali. 2022. “On Cumulative Residual Renyi’s Entropy”. Revista Colombiana De Estadística 45 (2):257-73. https://doi.org/10.15446/rce.v45n2.96844.

Harvard

Zardasht, V. (2022) “On Cumulative Residual Renyi’s Entropy”, Revista Colombiana de Estadística, 45(2), pp. 257–273. doi: 10.15446/rce.v45n2.96844.

IEEE

[1]
V. Zardasht, “On Cumulative Residual Renyi’s Entropy”, Rev. colomb. estad., vol. 45, no. 2, pp. 257–273, Jul. 2022.

MLA

Zardasht, V. “On Cumulative Residual Renyi’s Entropy”. Revista Colombiana de Estadística, vol. 45, no. 2, July 2022, pp. 257-73, doi:10.15446/rce.v45n2.96844.

Turabian

Zardasht, Vali. “On Cumulative Residual Renyi’s Entropy”. Revista Colombiana de Estadística 45, no. 2 (July 14, 2022): 257–273. Accessed January 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/96844.

Vancouver

1.
Zardasht V. On Cumulative Residual Renyi’s Entropy. Rev. colomb. estad. [Internet]. 2022 Jul. 14 [cited 2025 Jan. 28];45(2):257-73. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/96844

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

268

Downloads

Download data is not yet available.