Published
On Cumulative Residual Renyi's Entropy
Sobre la entropía residual acumulada de Renyi
DOI:
https://doi.org/10.15446/rce.v45n2.96844Keywords:
Aging classes, Cumulative Residual Entropy, Mean residual lifetime, Stochastic Orders, Shannon Entropy, Tsallis Entropy (en)Clases de envejecimiento, Entropía residual acumulativa, Vida media residual, Órdenes estocásticas, Entropía de Shannon, Entropía Tsallis (es)
Downloads
At the entropy measures and their generalization path, in the direction of statistics and information science, recently, Sunoj & Linu (2012) proposed the cumulative residual Renyi's entropy of order α and its dynamic version and studied its main properties. In this paper, we introduce an alternative measure of cumulative residual Renyi's entropy (CRRE) of order α which, unlike the mentioned one, is positive for all distributions and all values of α. We also consider its dynamic version and study their main properties in the context of reliability theory and stochastic orders. We give an estimator of the proposed CRRE and investigate its exact and asymptotic distribution. Numerous examples illustrating the theory are also given.
En las medidas de entropía y su camino de generalización, en la dirección de las estadísticas y la ciencia de la información, recientemente, Sunoj & Linu (2012) propuso el residual acumulativo la entropía de Renyi de orden α y su versión dinámica y se estudiaron sus principales propiedades. En este artículo presentamos una medida alternativa de la entropía residual acumulada de Renyi (CRRE) de orden α que, a diferencia de la mencionada, es positiva para todas las distribuciones y todos los valores de α. También consideramos su versión dinámica y estudiamos sus principales propiedades en el contexto de la teoría de la confiabilidad y los órdenes estocásticos. Damos un estimador del CRRE propuesto e investigamos su distribución exacta y asintótica. También se dan numerosos ejemplos que ilustran la teoría.
References
Abraham, B. & Sankaran, P. (2005), 'Renyi's entropy for residual lifetime distribution', Statistical Papers 46(1), 17-30. DOI: https://doi.org/10.1007/s00362-005-0270-y
Belzunce, F., Pinar, J. F. & Ruiz, J. M. (2005), 'On testing the dilation order and HNBUE alternatives', Annals of the Institute of Statistical Mathematic 57(4), 803-815. DOI: https://doi.org/10.1007/BF02915440
Crescenzo, A. D. & Longobardi, M. (2009), On cumulative entropies and lifetime estimations, in 'International Work-Conference on the Interplay Between Natural and Artificial Computation', Springer, pp. 132-141. DOI: https://doi.org/10.1007/978-3-642-02264-7_15
Farris, F. A. (2010), 'The Gini Index and Measures of Equitability', American Mathematical Monthly 57(12), 851-864. DOI: https://doi.org/10.4169/000298910x523344
Helmers, R. (1977), A strong law of large numbers for linear combinations of order statistics, Mathematics Centrum, Amsterdam.
Nanda, A. K. & Chowdhury, S. (2019), 'Shannon's entropy and Its Generalizations towards Statistics, Reliability and Information Science during 1948-2018', arXiv:1901.09779[stat.OT] .
Navarro, J., del Aguila, Y. & Asadi, M. (2010), 'Some new results on the cumulative residual entropy', Journal of Statistical Planning and Inference 140(1), 310-322. DOI: https://doi.org/10.1016/j.jspi.2009.07.015
Rajesh, G. & Sunoj, S. M. (2019), 'Some properties of cumulative Tsallis entropy of order α', Statistical papers 60(3), 583-593. DOI: https://doi.org/10.1007/s00362-016-0855-7
Rao, M., Chen, Y. & Vemuri, B. (2004), 'Cumulative residual entropy: a new measure of information', IEEE Transactions on Information Theory 50(6), 1220-1228. DOI: https://doi.org/10.1109/TIT.2004.828057
Rényi, A. (1961), On measures of entropy and information, in 'Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics', Vol. 4, University of California Press, pp. 547-562.
Shaked, M. & Shanthikumar, J. G. (2007), Stochastic Orders, Springer, New York. Shannon, C. (1948), 'A mathematical theory of communication', The Bell System Technical Journal 27, 379-423. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Shao, J. (2003), Mathematical Statistics, Springer, New York. DOI: https://doi.org/10.1007/b97553
Stigler, S. M. (1974), 'Linear functions of order statistics with smooth weight functions', Annals of Statistics 2, 676-693. DOI: https://doi.org/10.1214/aos/1176342756
Sunoj, S. M. & Linu, M. N. (2012), 'Dynamic cumulative residual Renyi's entropy', Statistics: A Journal of Theoretical and Applied Statistics 46(1), 41-56. DOI: https://doi.org/10.1080/02331888.2010.494730
Wellner, J. A. (1977), 'A Gelivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics', Annals of Statistics 5, 473-480. DOI: https://doi.org/10.1214/aos/1176343844
Zardasht, V. (2015), 'A test for the increasing convex order based on the cumulative residual entropy', Journal of the Korean Statistical Society 44, 491-497. DOI: https://doi.org/10.1016/j.jkss.2015.01.002
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).