
Published
Inter-Laboratory Testing Program for the Physical Characterization of Guamo Sand
Programa inter-laboratorio de ensayos para la caracterización física de la arena del Guamo
DOI:
https://doi.org/10.15446/ing.investig.113488Keywords:
round-robin testing, laboratory tests, standards and codes of practice, statistical analysis, sands (en)ensayos round-robin, ensayos de laboratorio, estándares y normativa de ensayos, análisis estadístico, arenas (es)
Downloads
In soil testing, assessing physical properties is essential for accurately characterizing sands. However, testing results can vary depending on the experimental procedures used and their implementation. A round-robin exercise facilitates the simultaneous analysis of the reproducibility and replicability of the standard methods used to characterize the properties of a specific material. This paper presents the outcomes of the first inter-laboratory testing initiative (i.e., a round-robin exercise) aimed at assessing the results variability of the physical characterization of a sandy soil. Guamo sand, widely utilized in local research and engineering projects in Colombia, was the focus of this study. 11 national academic laboratories participated in the program, conducting seven replicates of grain size distribution, solids specific gravity, and maximum and minimum void ratio tests. The data provided by all participants were analyzed and interpreted using statistical techniques. The results revealed significant differences between the data collected for each physical property, which can be attributed to the intrinsic variability of this sand’s natural origin and to the use of diverse testing procedures. These comparisons offer valuable practical insights into the discrepancies between the testing methodologies employed by the participants for soil characterization, and they constitute a comprehensive database for future research or practical applications.
En los ensayos de suelos, la evaluación de las propiedades físicas es esencial para caracterizar arenas con precisión. Sin embargo, los resultados de los ensayos pueden variar según los procedimientos experimentales utilizados y su implementación. Un ejercicio tipo round-robin facilita el análisis simultáneo de la reproducibilidad y la replicabilidad de los procedimientos estándar utilizados para caracterizar las propiedades de un material específico. Este artículo presenta los resultados de la primera iniciativa de ensayos inter-laboratorios (i.e., un ejercicio round-robin) cuyo objetivo fue evaluar la variabilidad de los resultados en la caracterización física de un suelo arenoso. La arena de Guamo, ampliamente utilizada en proyectos de investigación e ingeniería en Colombia, fue el foco de este estudio. 11 laboratorios académicos nacionales participaron en el programa, realizando siete réplicas de ensayos de distribución de tamaño de grano, gravedad específica de sólidos y de relación de vacíos máxima y mínima. Los datos proporcionados por todos los participantes fueron analizados e interpretados utilizando técnicas estadísticas. Los resultados revelaron diferencias significativas entre los datos recopilados para cada parámetro físico, atribuibles a la variabilidad intrínseca del origen natural de esta arena y a la utilización de diversos procedimientos de ensayo. Estas comparaciones ofrecen valiosas perspectivas prácticas sobre las discrepancias entre las metodologías de prueba empleadas por los participantes para la caracterización del suelo y constituyen una base de datos integral para futuras investigaciones o aplicaciones prácticas.
References
H. L. Anderson, A. Kemmler, G. W. H. Höhne, K. Heldt, and R. Strey, “Round robin test on the kinetic evaluation of a complex solid state reaction from 13 European laboratories. Part 1. Kinetic TG-analysis,” Thermochimica Acta, vol. 332, no. 1, pp. 33-53, 1999. https://doi.org/10.1016/S0040-6031(99)00045-3 DOI: https://doi.org/10.1016/S0040-6031(99)00045-3
M. Thompson and R. Wood, “International harmonized protocol for proficiency testing of (chemical) analytical laboratories,” J. AOAC Int., vol. 76, no. 4, pp. 926-940, 2006. http://dx.doi.org/10.1351/pac200678010145 DOI: https://doi.org/10.1093/jaoac/76.4.926
E. Hund, D. Massart, and J. Smeyers-Verbeke, “Inter-laboratory studies in analytical chemistry,” Analytica Chimica Acta, vol. 423, no. 2, pp. 145-165, 2000. https://doi.org/10.1016/S0003-2670(00)01115-6 DOI: https://doi.org/10.1016/S0003-2670(00)01115-6
R. K. Misra, J. F. Uthe, and C. J. Musial, “Multivariate analysis of a round-robin study on the measurement of chlorobiphenyls in fish oil,” Analyst, vol. 117, no. 7, pp. 1085-1091, 1992. https://doi.org/10.1039/AN9921701085 DOI: https://doi.org/10.1039/an9921701085
W. J. Youden and E. H. Steiner, Statistical Manual of the Association of Official Analytical Chemists: Statistical Techniques for Collaborative Tests. Rockville, MD, USA: The Association, 1975.
D. Hanson, J. Kotuby-Amacher, and R.O. Miller, “Soil analysis: Western states proficiency testing program for 1996,” Fresenius J. Anal. Chem., vol. 360, no. 3-4), pp. 348-350, 1998. https://doi.org/10.1007/s002160050707 DOI: https://doi.org/10.1007/s002160050707
M. Thompson and P. J. Lowthian, “Statistical aspects of proficiency testing in analytical laboratories Part 2. Testing for sufficient homogeneity”, Analyst, vol. 121, no. 11, pp. 1593-1596, 1996. https://doi.org/10.1039/AN9962101597 DOI: https://doi.org/10.1039/an9962101593
S. Tori, F. Tatsuoka, S. Miura, Y. Yoshimi, S. Yasuda, and Y. Makihara, “Cyclic undrained triaxial strength of sand by a cooperative test program,” Soils Found., vol. 26, no. 3, pp. 117-128, 1986. https://doi.org/10.3208/sandf1972.26.3_117 DOI: https://doi.org/10.3208/sandf1972.26.3_117
S. Yamashita, Y. Kohata, T. Kawaguchi, and S. Shibuya, “International round-robin test organized by TC-29,” in Advanced Laboratory Stress-Strain Testing of Geomaterials, 1st ed., R. Kuwano, Ed. London: Routledge, 2001, pp. 6-46
S. Yamashita, T. Kawaguchi, Y. Nakata, T. Mikami, T. Fujiwara, and S. Shibuya, “Interpretation of international parallel test on the measurement of Gmax using bender elements,” Soils Found., vol. 49, no. 4, pp. 631-650, 2009. https://doi.org/10.3208/sandf.49.631 DOI: https://doi.org/10.3208/sandf.49.631
A. Tarantino et al., “Benchmark of experimental techniques for measuring and controlling suction,” Géotechnique, vol. 61, no. 4, pp. 303-312, 2011. https://doi.org/10.1680/geot.2011.61.4.303 DOI: https://doi.org/10.1680/geot.2011.61.4.303
J. A. Santos et al., “Coimbra sand–round robin tests to evaluate liquefaction resistance,” in 15th World Conf. Earthquake Eng., 2012, pp. 24-28.
D. Reid et al. “Results of a critical state line testing round robin programme, “ Géotechnique, vol. 1, no. 15, pp. 373, 2020. http://dx.doi.org/10.1680/jgeot.19.P.373 DOI: https://doi.org/10.1680/jgeot.19.P.373
A. Ramos-Cañón, L. F. Prada-Sarmiento, and J. Camacho-Tauta, “Effects of initial stress anisotropy on the onset of undrained instability for Guamo sand”, Rev. Fac. Ing. Univ. Antioquia, vol. 109, pp. 69-78, 2022. https://doi.org/10.17533/udea.redin.20221104 DOI: https://doi.org/10.17533/udea.redin.20221104
D. O. Tique, “Estudio experimental de la inestabilidad difusa para la arena del Guamo Tolima,” M.S. thesis, Pontif. Univ. Javeriana, Bogotá, 2014.
D. P. Solaque, “Comparación del ángulo de fricción crítico con el ángulo de reposo-análisis de la influencia de algunos factores en la determinación del ángulo de reposo”. M.S. thesis, Univ. de Los Andes, Bogotá, 2008.
E. Dulcey-Leal, F. A. Molina-Gómez, and L. A. Bulla-Cruz, “Hydraulic conductivity in layered saturated soils assessed through a novel physical model”, DYNA, vol. 85, no. 205, pp. 119-124, 2018. http://doi.org/10.15446/dyna.v85n205.64473 DOI: https://doi.org/10.15446/dyna.v85n205.64473
D. F. Gil, C. C. Mendoza, L. R. Vásquez-Varela, and S. Cano, “Physical model of shallow foundation under dynamic loads on sands,” Infrastructures, vol. 7, no. 11, 2022, art. 147. https://doi.org/10.3390/infrastructures7110147 DOI: https://doi.org/10.3390/infrastructures7110147
Standard Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method, ASTM D1556/D1556M-15, American Society for Testing and Material International, 2015.
O. Jiménez and A. Lizcano, “Liquefaction flow behavior of guamo sand,” in From Fundamentals to Applications in Geotechnics: Proc. of the XV Pan-American Conf. on Soil Mechanics and Geot. Eng., Buenos Aires, D. Manzanal and A. Sfriso, Eds., 2015, pp. 470-477.
F. Molina-Gómez, B. Caicedo, and A. Viana da Fonseca, “Physical modelling of soil liquefaction in a novel micro shaking table,” Geomech. Eng., vol. 19, no. 3, pp. 229-240, 2019. https://doi.org/10.12989/gae.2019.19.3.229
J. C. Ruge, F. Molina-Gómez, J. Bastidas, R. P. da Cunha, and I. Otálvaro, “Partially saturation effect on fine sands and earth pressure in a sheetpile wall,” Rev. Int. Métodos Numér. Cálc. Diseño Ing., vol. 35, no. 4, art. 007, 2019. http://10.23967/j.rimni.2019.09.007 DOI: https://doi.org/10.23967/j.rimni.2019.09.007
J. F. Bermúdez Cuervo and J. C. Ruiz Acero, “Estudio experimental de la línea de inestabilidad bajo condiciones anisotrópicas de carga no drenada monotónica,” M.S. thesis, Pontif. Univ. Javeriana, Bogotá, 2015.
J. E. Carmona, “Análisis de la compacidad relativa en la construcción de muestras de arena usando técnicas experimentales de pluviación y modelamientos con el método de elementos discretos (DEM),” M.S. thesis, Univ. Dist. Francisco José de Caldas, Bogotá, 2019.
O. Jiménez, “Análisis del comportamiento de la licuación por flujo en la arena del guamo,” M.S. Thesis, Univ. de los Andes, Bogotá, 2011.
P. A. Arias, “Modelo de comportamiento de suelos granulares-estudio y determinación de sus parámetros,” M.S. thesis, Univ. de los Andes, Bogotá, 2006.
J. C. Patiño, “Parámetros hipoplásticos de la arena del Guamo-Colombia,” M.S. thesis, Univ. de los Andes, Bogotá, 2006.
V. E. J. Gómez, “Cambios de transformación de fase y atractores en materiales granulares,” Universidad de los Andes, Tech. Rep. MIC 2010 II 9 , 2010
J. F. Camacho-Tauta, F. A. Molina Gómez, and O. J. Reyes Ortiz, “Preparación de especímenes de arena para ensayos triaxiales mediante un método controlado de compactación,” Rev. Científica Gral. José María Córdova, vol. 12, no. 14, pp. 185-196, 2014. DOI: https://doi.org/10.21830/19006586.63
M. Cubrinovski and K. Ishihara, “Maximum and minimum void ratio characteristics of sands”, Soils Found., vol. 42, no. 6, pp. 65-78, 2002. https://doi.org/10.3208/sandf.42.6_65 DOI: https://doi.org/10.3208/sandf.42.6_65
G.C. Cho, J. Dodds, and J.C. Santamarina, “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands,” J. Geotech. Geoenviromental Eng., vol. 132, no. 5, pp. 591-602, 2006. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591) DOI: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591)
L. M. Wei and J. Yang, “On the role of grain shape in static liquefaction of sand–fines mixtures,” Géotechnique, vol. 4, no. 9, pp. 740-745, 2014. http://dx.doi.org/10.1680/geot.14.T.013 DOI: https://doi.org/10.1680/geot.14.T.013
F. N. Altuhafi, M. R. Coop, and V. N. Georgiannou, “Effect of particle shape on the mechanical behavior of natural sands, “ J. Geot. Geoenvironmental Eng., vol. 142, no. 12, art. 3, 2016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569
C. Ramos, C. Ferreira, F. Molina-Gómez, and A. Viana da Fonseca, “Critical state lines of portuguese liquefiable sands,” E3S Web Conf., vol. 92, art. 06003, 2019. https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/18/e3sconf_isg2019_06003.pdf DOI: https://doi.org/10.1051/e3sconf/20199206003
D. Sarkar, M. Goudarzy, and D. König, “An interpretation of the influence of particle shape on the mechanical behavior of granular material,” Gran. Matter, vol. 21, no. 3, art. 53, 2019. https://link.springer.com/article/10.1007/s10035-019-0909-3 DOI: https://doi.org/10.1007/s10035-019-0909-3
Y. Xiao, L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein “Effect of particle shape on stress-dilatancy responses of medium-dense sands,” J. Geot. Geoenvironmental Eng., vol. 145, no. 2, art. 3, 2019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994
F. Molina-Gómez and A. Viana da Fonseca, “Key geomechanical properties of the historically liquefiable TP-Lisbon sand,“ Soils Found. vol. 61, no. 3, pp. 836-56, 2021. https://doi.org/10.1016/j.sandf.2021.03.004 DOI: https://doi.org/10.1016/j.sandf.2021.03.004
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM D2487-06, American Society for Testing and Materials International, 2006.
F. Molina-Gómez, L. A. Bulla-Cruz, and A. E. Darghan Contreras, “Profiles analysis as a modality of repeated measures for comparing grain size distributions in granular bases,” Measurement J. Int. Measur. Confed., vol. 146, pp. 930-937. 2019. https://ui.adsabs.harvard.edu/link_gateway/2019Meas..146..930M/doi:10.1016/j.measurement.2019.07.004 DOI: https://doi.org/10.1016/j.measurement.2019.07.004
W. Hassan et al., “Statistical interpolation and spatial mapping of geotechnical soil parameters of District Sargodha, Pakistan,” Bull. Eng. Geol. Environ., vol. 82, art. 37, 2023. https://doi.org/10.1007/s10064-022-03059-2 DOI: https://doi.org/10.1007/s10064-022-03059-2
RStudio Team, “RStudio: Integrated Development for R.” [Online]. Available: http://www.rstudio.com/
J. A. Woodward, D. G. Bonett, and M. L. Brecht, Introduction to linear models and experimental design. San Diego, CA, USA: Academic Press, 1990.
D. C. Montgomery, Design and analysis of experiments, 8th ed. Hoboken, NJ, USA: Wiley, 2013.
W. Hassan et al., “Geospatial and statistical interpolation of geotechnical data for modeling zonation maps of Islamabad, Pakistan,” Environ. Earth Sci., vol. 81, art. 547, 2022. https://doi.org/10.1007/s12665-022-10669-2 DOI: https://doi.org/10.1007/s12665-022-10669-2
P. Good, Permutation, parametric, and bootstrap tests of hypotheses, 3rd ed. New York, NY, USA: Springer, 2005.
A. M. Winkler, G. R. Ridgway, M. A. Webster, S. M. Smith, and T. E. Nichols, “Permutation inference for the general linear model,” NeuroImage, vol. 92, pp. 381-397, 2014. https://doi.org/10.1016/j.neuroimage.2014.01.060 DOI: https://doi.org/10.1016/j.neuroimage.2014.01.060
E. S. Edgington and P. Onghena, Randomization tests, 4th ed. Boca Raton, FL, USA: Chapman & Hall, 2007. DOI: https://doi.org/10.1201/9781420011814
F. Molina-Gómez, L. A. Bulla-Cruza, and A. E. Darghan Contreras, “A novel approach for the control of grain size distributions based on variance analysis,” Constr. Building Mat., vol. 285, 2021, art. 122748. http://dx.doi.org/10.1111/ejss.13354 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122748
M. J. Anderson, “Permutation tests for univariate or multivariate analysis of variance and regression,” Can. J. Fisheries Aquatic Sci., vol. 58, pp. 626-639, 2001. https://doi.org/10.1139/f01-004 DOI: https://doi.org/10.1139/f01-004
M. Hervé, “RVAideMemoire.” [Online]. Available: https://cran.r-project.org/web/packages/RVAideMemoire/RVAideMemoire.pdf, 2020
J. Tukey, “Comparing individual means in the analysis of variance,” Biometrics, vol. 5, no. 2, pp. 99-114, 1949. https://doi.org/10.2307/3001913 DOI: https://doi.org/10.2307/3001913
T. Lunne et al. “Methods used to determine maximum and minimum dry unit weights of sand: Is there a need for a new standard?” Can. Geotech J., vol. 56, no. 4, pp. 536-553, 2019. https://doi.org/10.1139/cgj-2017-0738 DOI: https://doi.org/10.1139/cgj-2017-0738
C. S. Chang, J. Y. Wang, and L. Ge, “Maximum and minimum void ratios for sand-silt mixtures”, Eng. Geol., vol. 211, pp. 7-18, 2016. https://doi.org/10.1016/j.enggeo.2016.06.022 DOI: https://doi.org/10.1016/j.enggeo.2016.06.022
G. Baecher and J. Christian, Reliability and statistics in geotechnical engineering. Hoboken, NJ: Wiley, 2003.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Juan Carlos Ruge, Fausto Molina-Gómez, María C. Olarte, Javier Camacho-Tauta, Óscar Reyes- Ortiz, Joan M. Larrahondo, Hermes A. Vacca, Luis F. Prada, Alfonso Ramos-Cañón, Yesid A. Alvarado, Fernando J. Reyes, Miguel A. Cabrera, Bernardo Caicedo-Hormaza, José S. Naranjo, Iván F. Otálvaro, Alejandra Gómez-Jiménez, Mayra A. Galvis, July E. Carmona, Cesar A. García, Allex E. Álvarez, Edgardo J. Díaz, Julio E. Colmenares, Carlos R. Reina, Cristhian C. Mendoza, Diego F. Gil, Laura M. Espinosa, Eliana Martínez-Rojas, Juan G. Bastidas, Jhan P. Rojas

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.