Letter to the editor: The 2021 Physics Nobel Prize and the understanding of complex physical systems
Carta al editor: El Premio Nobel de Física 2021 y la comprensión de los sistemas físicos complejos
DOI:
https://doi.org/10.15446/mo.n64.100335Keywords:
complex systems, climate physics, spin glasses, replica symmetry breaking, random lasers (en)sistemas complejos, física climática, vidrios de spins, ruptura de simetría de réplicas, láseres aleatorios (es)
Downloads
The 2021 Physics Nobel Prize was awarded to Syukuro Manabe, Klaus Hasselmann, and Giorgio Parisi for their “groundbreaking contributions to our understanding of complex physical systems.” Here we review some of the ideas and results which served as the scientific basis to the award. We also comment on the works by our research group on the complex systems properties of random lasers and random fiber lasers.
El Premio Nobel de Física 2021 fue otorgado a Syukuro Manabe, Klaus Hasselmann y Giorgio Parisi por sus “contribuciones innovadoras a nuestra comprensión de los sistemas físicos complejos.” Aquí repasamos algunas de las ideas y resultados que sirvieron de base científica al premio. También comentamos los trabajos de nuestro grupo de investigación sobre las propiedades de sistemas complejos de los láseres aleatorios y láseres de fibra aleatorios.
References
Report of the Nobel Committee for Physics. Scientific Background on the Nobel Prize in Physics 2021. https://www.nobelprize.org/prizes/physics/2021/advanced-information/
V. Cannella and J. A. Mydosh, Magnetic ordering in gold-iron alloys, Phys. Rev. B 6, 4220 (1972).
S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5, 965 (1975).
D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett. 35, 1792 (1975).
J. R. L. de Almeida and D. J. Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model, J. Phys. A 11, 983 (1978).
G. Parisi, Toward a mean field theory of spin glasses, Phys. Lett. 73A, 203 (1979).
G. Parisi, Infinite number of order parameters for spin-glasses, Phys. Rev. Lett. 43, 1754 (1979).
M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).
V. S. Letokhov, Generation of light by a scattering medium with negative resonance absorption, Sov. Phys. JETP 26, 835 (1968).
N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Laser action in strongly scattering media, Nature 368, 436 (1994).
A. S. L. Gomes, A. L. Moura, C. B. de Araújo, and E. P. Raposo, Recent advances and applications of random lasers and random fiber lasers, Prog. Quantum Electron. 78, 100343 (2021).
L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, Glassy behavior of light, Phys. Rev. Lett. 96, 065702 (2006).
N. Ghofraniha, I. Viola, F. Di Maria, G. Barbarella, G. Gigli, L. Leuzzi, C. Conti, Experimental evidence of replica symmetry breaking in random lasers, Nat. Commun. 6, 6058 (2015).
A. S. L. Gomes, B. C. Lima, P. I. R. Pincheira, A. L. Moura, M. Gagné, E. P. Raposo, C. B. de Araújo, and R. Kashyap, Glassy behavior in a one-dimensional continuous-wave erbium-doped random fiber laser, Phys. Rev. A 94, 011801(R) (2016).
B. C. Lima, A. S. L. Gomes, P. I. R. Pincheira, A. L. Moura, M. Gagné, E. P. Raposo, C. B. de Araújo, and R. Kashyap, Observation of Lévy statistics in one-dimensional erbium-based random fiber laser, J. Opt. Soc. Am. B 34, 293 (2017).
I. R. R. González, E. P. Raposo, A. M. S. Macêdo, L. de S. Menezes, and A. S. L. Gomes, Coexistence of turbulence-like and glassy behaviours in a photonic system, Sci. Rep. 8, 17046 (2018).
A. S. L. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. R. Pincheira, V. Jerez, L. J. Q. Maia, and C. B. de Araújo, Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements, Sci. Rep. 6, 27987 (2016).
A. L. Moura, P. I. R. Pincheira, A. S. Reyna, E. P. Raposo, A. S. L. Gomes, and C. B. de Araújo,
Replica symmetry breaking in the photonic ferromagneticlike spontaneous mode-locking phase of a multimode Nd:YAG laser, Phys. Rev. Lett. 119, 163902 (2017).
P. I. R. Pincheira, A. F. Silva, S. I. Fewo, S. J. M. Carreño, A. L. Moura, E. P. Raposo, A. S. L. Gomes, and C. B. de Araújo, Observation of photonic paramagnetic to spin-glass transition in specially designed TiO2 particles-based dye-colloidal random laser, Opt. Lett. 41, 3459 (2016).
E. P. Raposo and A. S. L. Gomes, Analytical solution for the Lévy-like steady-state distribution of intensities in random lasers, Phys. Rev. A 91, 043827 (2015).
C. B. de Araújo, A. S. L. Gomes, and E. P. Raposo, Lévy statistics and glassy behavior of light in random fiber lasers, Appl. Sci. 7, 644 (2017).
B. C. Lima, P. I. R. Pincheira, E. P. Raposo, L. de S. Menezes, C. B. de Araújo, A. S. L. Gomes, and R. Kashyap, Extreme-value statistics of intensities in a CW-pumped random fiber laser, Phys. Rev. A 96, 013834 (2017).
E. P. Raposo, I. R. R. González, A. M. S. Macêdo, B. C. Lima, R. Kashyap, L. de S. Menezes, and A. S. L. Gomes, Evidence of Floquet phase in a photonic system, Phys. Rev. Lett. 122, 143903 (2019).
I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum, A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P. Raposo, A. S. L. Gomes, and R. Kashyap, Turbulence hierarchy in a random fibre laser, Nat. Commun. 8, 15731 (2017).
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.