ESTIMATION OF NUCLEAR STRUCTURE OF 186Hg NUCLEUS BY IBM-1 AND IBM-2 MODELS
ESTIMACIÓN DE LA ESTRUCTURA NUCLEAR DEL NÚCLEO 186Hg MEDIANTE LOS MODELOS IBM-1 E IBM-2
DOI:
https://doi.org/10.15446/mo.n69.112749Keywords:
IBM-1, IBM-2, energy level, B(E2), potential energy, 186Hg isotope (en)IBM-1, IBM-2, B(E2), nivel de energía, energía potencial, isótopo 186Hg (es)
Downloads
This paper presents an analysis of the Interacting Boson Model (IBM-1) and IBM-2, which are considered representative models for the translation limit of SU(3)-O(6). An appropriate method for fitting is expected to develop the optimum parameters for the calculated energy level of 186Hg nucleus. The intended energy states for the various bands, for example, ground, γ, and β bands of mutually exclusive models, are associated with the prevailing measured data. The strengths of quadruple electromagnetic transitions in this nucleus, established by the IBM-1 and IBM-2 models, are conveyed and compared with reasonable prior measured data. The potential energy surfaces (PES) of this nucleus for the distortion parameter in the SU(3)-O(6) symmetry in IBM-1 are determined and analyzed.
Este artículo presenta un análisis del Modelo de Bosones Interactuantes (IBM-1) y el IBM-2, los cuales se consideran modelos representativos para el límite de transición de SU(3)-O(6). Se espera que un método adecuado de ajuste desarrolle los parámetros óptimos para el nivel de energía calculado del núcleo de 186Hg. Los estados de energía previstos para las diversas bandas, como la banda fundamental, la banda γ y la banda β de modelos mutuamente excluyentes, se asocian con los datos medidos predominantes. Las intensidades de las transiciones electromagnéticas cuadrupolares en este núcleo, determinadas mediante los modelos IBM-1 e IBM-2, se presentan y se comparan con datos medidos previamente y considerados razonables. Se determinan y analizan las superficies de energía potencial (PES) de este núcleo para el parametro de distorsión en la simetría SU(3)-O(6) en IBM-1.
References
F. Iachello and A. Arima, The interacting boson model. In: Arias, J.M., Lozano, M. (eds) An Advanced Course in Modern Nuclear Physics. Lecture Notes in Physics, vol 581 (Springer, Berlin, Heidelberg, 2001). https://link.springer.com/chapter/10.1007/3-540-44620-6_5
A. Arima, T. Ohtsuka, F. Iachello, and I. Talmi, Phys Lett B 66, 205 (1977). https://www.sciencedirect.com/science/article/abs/pii/0370269377908607?via%3Dihub
T. Otsuka, A. Arima, F. Iachello, and I. Talmi, Phys Lett B 76, 139 (1978). https://www.sciencedirect.com/science/article/abs/pii/0370269378902605?via%3Dihub
G. L. Long, S. J. Zhu, and H. Z. Sun, J. Phys. G: Nucl. Part. Phys. 21, 331 (1995). https://iopscience.iop.org/article/10.1088/0954-3899/21/3/008
F. Iachello, Phys Rev Lett 87, 52502 (2001). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.052502
P. Cejnar, J. Jolie, and R. F. Casten, Rev Modern Phys 82, 2155 (2010). https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.2155
R. F. Casten and E. A. McCutchan, J. Phys. G: Nucl. Part. Phys. 34, R285 (2007). https://iopscience.iop.org/article/10.1088/0954-3899/34/7/R01
M. Siciliano, I. Zanon, and et al., Phys. Rev. C 102, 014318 (2020). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.102.014318
V. Prassa and K. E. Karakatsanis, Bulg. J. Phys. 48, 495 (2021). https://www.bjp-bg.com/paper1.php?id=1483
J. E. Garcia-Ramos and K. Heyde, EPJ Web of Conferences 93, 01004 (2015). https://www.epj-conferences.org/articles/epjconf/abs/2015/12/epjconf_cgs2015_01004/epjconf_cgs2015_01004.html
F. Radhi, H. Kassim, and et al., Nucl. Phys. At. Energy 24, 209 (2023). http://jnpae.kinr.kiev.ua/24.3/html/24.3.209.html
I. Hossain, H. Kassim, and et al., Probl At Sci Tech 3, 79 (2023). https://vant.kipt.kharkov.ua/ARTICLE/VANT_2023_3/article_2023_3_79.pdf
M. A. Al-Jubbori, H. H. Kassim, and et al., Int J Mod Phys E 27, 1850035 (2018). https://www.worldscientific.com/doi/abs/10.1142/S0218301318500350
M. Al-Jubbori, H. Kassim, and et al., Indian J Phys 94, 379 (2019). https://link.springer.com/article/10.1007/s12648-019-01461-3
M. Al-Jubbori, H. Kassim, and et al., Ukrainian J Phys 67, 127 (2022). https://www.ujp.bitp.kiev.ua/index.php/ujp/article/view/2021347
K. Hussain, M. Mohsin, and F. Sharrad, Iran J Sci Technol Trans Sci 43, 1273 (2019). https://link.springer.com/article/10.1007/s40995-017-0419-2
K. Hussain, M. Mohsin, and F. Sharrad, Ukrainian J Phys 62, 653 (2017). https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018640
A. Salam, I. Hossain, and et al., Papers in Physics 15, 150005 (2023). https://www.papersinphysics.org/papersinphysics/article/view/928
R. Casten and D. Warner, Rev Mod Phys 60, 389 (1988). https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.60.389
A. Mohammed-Ali, R. Alkhayat, and et al., Rev Mex Fis 68, 060401 1–(2022). https://rmf.smf.mx/ojs/index.php/rmf/article/view/6039
A. Arima and F. Iachello, Annals Phys 99, 253 (1976). https://www.sciencedirect.com/science/article/abs/pii/000349167690097X?via%3Dihub
A. Arima and F. Iachello, Annals Phys 111, 201 (1978). https://www.sciencedirect.com/science/article/abs/pii/0003491678902282?via%3Dihub
F. Iachello, Phys Rev Lett 44, 772 (1980). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.44.772
O. Scholten, The program package phint for iba calculations, in Computational Nuclear Physics 1: Nuclear Structure (Springer Berlin Heidelberg, 1991) pp. 88–104. https://link.springer.com/chapter/10.1007/978-3-642-76356-4_5
M. Al-Jubbori, K. Al-Mtiuty, and et al., Indian J Phys 89, 1085 (2015). https://link.springer.com/article/10.1007/s12648-015-0679-7
F. Ali, M. Abed Al-Jubbori, and R. Alkhayat, Momento 68, 86 (2024). https://revistas.unal.edu.co/index.php/momento/article/view/109589
G. Puddu, O. Scholten, and T. Otsuka, Nucl Phys A 348, 109 (1980). https://www.sciencedirect.com/science/article/abs/pii/0375947480905485?via%3Dihub
T. Otsuka and N. Yoshida, User’s manual of the program NPBOS. Report JAERI-M 85-094 (Japan Atom Energy Res Inst, 1985). https://inis.iaea.org/search/search.aspx?orig_q=RN:17033326
National Nuclear Data Center, Brookhaven National Laboratory, (consulted nov. 2024). https://www.nndc.bnl.gov/
J. Batchelder, A. Hurst, and M. Basunia, Nucl Data Sheets 183, 1 (2022). https://www.sciencedirect.com/science/article/abs/pii/S009037522200031X?via%3Dihub
J. E. García-Ramos and K. Heyde, Phys Rev C 89, 014306 (2014). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.89.014306
J. Yao, M. Bender, and P. Heenen, Phys Rev C 87, 034322 (2013). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.87.034322
L. Próchniak and S. Rohozínski, J. Phys. G: Nucl. Part. Phys. 36, 123101 (2009). https://iopscience.iop.org/article/10.1088/0954-3899/36/12/123101
R. Michel, R. Bodemann, and et al., Nucl Intrum Meth Phys Res Sect B Beam Interact with Mater Atoms. 129, 153 (1997). https://www.sciencedirect.com/science/article/abs/pii/S0168583X97002139?via%3Dihub
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.