STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES
ESTUDIO DE NANOESTRUCTURAS DE ÓXIDO DE ZINC/ÓXIDO DE COBRE/SELENIURO DE CADMIO PARA DIODOS EMISORES DE LUZ
DOI:
https://doi.org/10.15446/mo.n70.114898Keywords:
Zinc oxide, copper oxide, cadmium selenide, nanostructures, light-emitting diode (en)Óxido de zinc, óxido de cobre, seleniuro de cadmio, nanoestructuras, diodo emisor de luz (es)
Downloads
The synthesis of zinc oxide, copper oxide, and cadmium selenide as a heterostructure was conducted using a simple co-precipitation method. Structural, optical, and electrical properties were investigated. XRD patterns show hexagonal form for ZnO, cubic for CuO, and wurtzite for CdSe, with an average particle size of 18.5, 22.3, and 38.2 nm for ZnO, CuO, and CdSe, respectively. SEM images show ZnO crystals with a nanorod shape and CuO and CdSe nanoparticles with nano-branch agglomerations in all directions. Optical properties exhibit a redshift in absorbance (460 nm) with photoluminescence peaks at 500 nm for the heterostructure and a broadened band gap (2.5 eV). In light, the heterostructure shows increased light absorption, leading to enhanced electron-hole production and an exponential increase in forward current. These results enhance the success of fabrication of high-amplification light-emitting diodes.
Se sintetizó óxido de zinc, óxido de cobre y seleniuro de cadmio como heteroestructura utilizando el método de co-precipitación simple. Se investigaron las propiedades estructurales, ópticas y eléctricas. Los patrones de DRX muestran una forma hexagonal para el ZnO, cúbica para el CuO y de wurtzita para el CdSe, con un tamaño de partícula promedio de 18.5, 22.3 y 38.2 nm para ZnO, CuO y CdSe, respectivamente. Las imágenes de SEM muestran cristales de ZnO en forma de nanovarilla y nanopartículas de CuO y CdSe con nano-ramas aglomeradas en todas las direcciones. Las propiedades ópticas exhiben un desplazamiento al rojo en la absorbancia (460 nm) con picos de fotoluminiscencia a 500 nm para la heteroestructura y una brecha de banda ampliada (2.5 eV). Bajo la luz, la heteroestructura muestra una mayor absorción, lo que conduce a un aumento en la producción de pares electrón-hueco y a un incremento exponencial de la corriente de avance.
References
Y. Zhu and X. Wu, Prog. Mater. Sci. 131, 101019 (2023). https://www.sciencedirect.com/science/article/pii/S0079642522001001?via%3Dihub
C. Pushpalatha, J. Suresh, and et al., Front Bioeng Biotechnol. 19, 917990 (2022). https://pubmed.ncbi.nlm.nih.gov/35662838/
Z. Abdul-Ameer, Iraqi J. Sci. 65, 2460 (2024). https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/7623
A. Katiyar, N. Kumar, and et al., Mater. Today - Proc. 46, 2374 (2021). https://www.sciencedirect.com/science/article/abs/pii/S2214785321040311?via%3Dihub
M. Grigore, E. Biscu, and et al., Pharmaceuticals 9, 75 (2016). https://www.mdpi.com/1424-8247/9/4/75
M. Sahooli, S. Sabbaghi, and R. Saboori, Materials Letters 81, 169 (2012). https://linkinghub.elsevier.com/retrieve/pii/S0167577X12006428
P. Sanjay, K. Deepa, and et al., IOP Conf. Ser.: Mater. Sci. Eng. 360, 012010 (2018). https://iopscience.iop.org/article/10.1088/1757-899X/360/1/012010
S. Sagadevan and C. Arunseshan, Appl. Nanosci. 4, 179 (2014). https://link.springer.com/article/10.1007/s13204-012-0186-5
G. Ramalingam, N. Melikechi, and et al., J. Cryst. Growth 311, 3138 (2009). https://linkinghub.elsevier.com/retrieve/pii/S0022024809003339
M. Ali, W. Syed, and et al., Appl. Surf. Sci. 284, 482 (2013). https://linkinghub.elsevier.com/retrieve/pii/S0169433213014335
L. Roza, K. Fairuzy, and et al., J. Mater. Sci.: Mater. Electron. 26, 7955 (2015). https://link.springer.com/article/10.1007/s10854-015-3449-6
Z. Abdul-Ameer, Momento 68, 27 (2024). https://revistas.unal.edu.co/index.php/momento/article/view/110999
Z. Abdul-Ameer, J. Opt. 53, 5065 (2024). https://link.springer.com/article/10.1007/s12596-024-01673-9
Z. Abdul-Ameer, Momento 67, 67 (2023). https://revistas.unal.edu.co/index.php/momento/article/view/104960
D. Nath, F. Singh, and R. Das, Mater. Chem. Phys. 239, 122021 (2020). https://linkinghub.elsevier.com/retrieve/pii/S0254058419308181
J. Al Abbas, L. Al Taan, and M. Uonis, Chalcogenide Lett. 20, 883 (2023). https://www.researchgate.net/publication/376554447_Structural_and_optical_properties_of_cadmium_selenide_thin_film_growth_with_different_substrate_temperatures_by_spray_pyrolysis_deposition
M. Singh, M. Goyal, and K. Devlal, J. Taibah Univ. Sci. 12, 470 (2018). https://www.tandfonline.com/doi/full/10.1080/16583655.2018.1473946
D. Singh, D. Pandey, and et al., Pramana - J. Phys. 78, 759 (2012). https://link.springer.com/article/10.1007/s12043-012-0275-8
A. Kudhur, A. Salim, and et al., J. Opt. 53, 1936 (2024). https://link.springer.com/article/10.1007/s12596-023-01331-6
A. Layashchova, A. Dmytruk, and et al., Nanoscale Res. Lett. 9, 88 (2014). https://link.springer.com/article/10.1186/1556-276X-9-88
R. Zhang, P.-G. Yin, and et al., Solid State Sci. 11, 865 (2009). https://www.sciencedirect.com/science/article/abs/pii/S129325580800335X?via%3Dihub
S.-S. Chang, H.-J. Lee, and H. J. Park, Ceramics International 31, 411 (2005). https://www.sciencedirect.com/science/article/abs/pii/S0272884204003712?via%3Dihub
J. Yu and R. Chen, InfoMat. 2, 905 (2020). https://onlinelibrary.wiley.com/doi/10.1002/inf2.12106
K. K. Pathak, M. A. Pateria, and et al., Materials Science-Poland 37, 33 (2019). https://sciendo.com/article/10.2478/msp-2019-0006
P. Bai, A. Hu, and et al., The Journal of Physical Chemistry Letters 13, 9051 (2022). https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02633
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.