Published

2025-01-30

STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES

ESTUDIO DE NANOESTRUCTURAS DE ÓXIDO DE ZINC/ÓXIDO DE COBRE/SELENIURO DE CADMIO PARA DIODOS EMISORES DE LUZ

DOI:

https://doi.org/10.15446/mo.n70.114898

Keywords:

Zinc oxide, copper oxide, cadmium selenide, nanostructures, light-emitting diode (en)
Óxido de zinc, óxido de cobre, seleniuro de cadmio, nanoestructuras, diodo emisor de luz (es)

Downloads

Authors

  • Zehraa N. Abdul-Ameer University of Baghdad, College of science, Nanotechnology, Remote Sensing and GIS.

The synthesis of zinc oxide, copper oxide, and cadmium selenide as a heterostructure was conducted using a simple co-precipitation method. Structural, optical, and electrical properties were investigated. XRD patterns  show hexagonal form for ZnO, cubic for CuO, and wurtzite for CdSe, with an average particle size of 18.5,  22.3, and 38.2 nm for ZnO, CuO, and CdSe, respectively. SEM images show ZnO crystals with a nanorod shape and CuO and CdSe nanoparticles with nano-branch agglomerations in all directions. Optical properties exhibit a redshift in absorbance (460 nm) with photoluminescence peaks at 500 nm for the heterostructure and a broadened band gap (2.5 eV). In light, the heterostructure shows increased light absorption, leading to enhanced electron-hole production and an exponential increase in forward current. These results enhance the success of fabrication of high-amplification light-emitting diodes.

Se sintetizó óxido de zinc, óxido de cobre y seleniuro de cadmio como heteroestructura utilizando el método de co-precipitación simple. Se investigaron las  propiedades estructurales, ópticas y eléctricas. Los  patrones de DRX muestran una forma hexagonal para el ZnO, cúbica para el CuO y de wurtzita para el CdSe, con un tamaño de partícula promedio de 18.5, 22.3 y 38.2 nm para ZnO, CuO y CdSe, respectivamente. Las imágenes de SEM muestran cristales de ZnO en forma de nanovarilla y nanopartículas de CuO y CdSe con nano-ramas  aglomeradas en todas las direcciones. Las propiedades ópticas exhiben un desplazamiento al rojo en la  absorbancia (460 nm) con picos de fotoluminiscencia a 500 nm para la heteroestructura y una brecha de banda ampliada (2.5 eV). Bajo la luz, la heteroestructura  muestra una mayor absorción, lo que conduce a un  aumento en la producción de pares electrón-hueco y a un incremento exponencial de la corriente de avance.

References

Y. Zhu and X. Wu, Prog. Mater. Sci. 131, 101019 (2023). https://www.sciencedirect.com/science/article/pii/S0079642522001001?via%3Dihub

C. Pushpalatha, J. Suresh, and et al., Front Bioeng Biotechnol. 19, 917990 (2022). https://pubmed.ncbi.nlm.nih.gov/35662838/

Z. Abdul-Ameer, Iraqi J. Sci. 65, 2460 (2024). https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/7623

A. Katiyar, N. Kumar, and et al., Mater. Today - Proc. 46, 2374 (2021). https://www.sciencedirect.com/science/article/abs/pii/S2214785321040311?via%3Dihub

M. Grigore, E. Biscu, and et al., Pharmaceuticals 9, 75 (2016). https://www.mdpi.com/1424-8247/9/4/75

M. Sahooli, S. Sabbaghi, and R. Saboori, Materials Letters 81, 169 (2012). https://linkinghub.elsevier.com/retrieve/pii/S0167577X12006428

P. Sanjay, K. Deepa, and et al., IOP Conf. Ser.: Mater. Sci. Eng. 360, 012010 (2018). https://iopscience.iop.org/article/10.1088/1757-899X/360/1/012010

S. Sagadevan and C. Arunseshan, Appl. Nanosci. 4, 179 (2014). https://link.springer.com/article/10.1007/s13204-012-0186-5

G. Ramalingam, N. Melikechi, and et al., J. Cryst. Growth 311, 3138 (2009). https://linkinghub.elsevier.com/retrieve/pii/S0022024809003339

M. Ali, W. Syed, and et al., Appl. Surf. Sci. 284, 482 (2013). https://linkinghub.elsevier.com/retrieve/pii/S0169433213014335

L. Roza, K. Fairuzy, and et al., J. Mater. Sci.: Mater. Electron. 26, 7955 (2015). https://link.springer.com/article/10.1007/s10854-015-3449-6

Z. Abdul-Ameer, Momento 68, 27 (2024). https://revistas.unal.edu.co/index.php/momento/article/view/110999

Z. Abdul-Ameer, J. Opt. 53, 5065 (2024). https://link.springer.com/article/10.1007/s12596-024-01673-9

Z. Abdul-Ameer, Momento 67, 67 (2023). https://revistas.unal.edu.co/index.php/momento/article/view/104960

D. Nath, F. Singh, and R. Das, Mater. Chem. Phys. 239, 122021 (2020). https://linkinghub.elsevier.com/retrieve/pii/S0254058419308181

J. Al Abbas, L. Al Taan, and M. Uonis, Chalcogenide Lett. 20, 883 (2023). https://www.researchgate.net/publication/376554447_Structural_and_optical_properties_of_cadmium_selenide_thin_film_growth_with_different_substrate_temperatures_by_spray_pyrolysis_deposition

M. Singh, M. Goyal, and K. Devlal, J. Taibah Univ. Sci. 12, 470 (2018). https://www.tandfonline.com/doi/full/10.1080/16583655.2018.1473946

D. Singh, D. Pandey, and et al., Pramana - J. Phys. 78, 759 (2012). https://link.springer.com/article/10.1007/s12043-012-0275-8

A. Kudhur, A. Salim, and et al., J. Opt. 53, 1936 (2024). https://link.springer.com/article/10.1007/s12596-023-01331-6

A. Layashchova, A. Dmytruk, and et al., Nanoscale Res. Lett. 9, 88 (2014). https://link.springer.com/article/10.1186/1556-276X-9-88

R. Zhang, P.-G. Yin, and et al., Solid State Sci. 11, 865 (2009). https://www.sciencedirect.com/science/article/abs/pii/S129325580800335X?via%3Dihub

S.-S. Chang, H.-J. Lee, and H. J. Park, Ceramics International 31, 411 (2005). https://www.sciencedirect.com/science/article/abs/pii/S0272884204003712?via%3Dihub

J. Yu and R. Chen, InfoMat. 2, 905 (2020). https://onlinelibrary.wiley.com/doi/10.1002/inf2.12106

K. K. Pathak, M. A. Pateria, and et al., Materials Science-Poland 37, 33 (2019). https://sciendo.com/article/10.2478/msp-2019-0006

P. Bai, A. Hu, and et al., The Journal of Physical Chemistry Letters 13, 9051 (2022). https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02633

How to Cite

APA

Abdul-Ameer, Z. N. (2025). STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES. MOMENTO, (70), 33–44. https://doi.org/10.15446/mo.n70.114898

ACM

[1]
Abdul-Ameer, Z.N. 2025. STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES. MOMENTO. 70 (Jan. 2025), 33–44. DOI:https://doi.org/10.15446/mo.n70.114898.

ACS

(1)
Abdul-Ameer, Z. N. STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES. Momento 2025, 33-44.

ABNT

ABDUL-AMEER, Z. N. STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES. MOMENTO, [S. l.], n. 70, p. 33–44, 2025. DOI: 10.15446/mo.n70.114898. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/114898. Acesso em: 8 mar. 2025.

Chicago

Abdul-Ameer, Zehraa N. 2025. “STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES”. MOMENTO, no. 70 (January):33-44. https://doi.org/10.15446/mo.n70.114898.

Harvard

Abdul-Ameer, Z. N. (2025) “STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES”, MOMENTO, (70), pp. 33–44. doi: 10.15446/mo.n70.114898.

IEEE

[1]
Z. N. Abdul-Ameer, “STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES”, Momento, no. 70, pp. 33–44, Jan. 2025.

MLA

Abdul-Ameer, Z. N. “STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES”. MOMENTO, no. 70, Jan. 2025, pp. 33-44, doi:10.15446/mo.n70.114898.

Turabian

Abdul-Ameer, Zehraa N. “STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES”. MOMENTO, no. 70 (January 30, 2025): 33–44. Accessed March 8, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/114898.

Vancouver

1.
Abdul-Ameer ZN. STUDYING ZINC OXIDE/COPPER OXIDE/CADMIUM SELENIDE NANOSTRUCTURES FOR LIGHT EMITTING DIODES. Momento [Internet]. 2025 Jan. 30 [cited 2025 Mar. 8];(70):33-44. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/114898

Download Citation